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Abstract—Understanding the extent to which computational
results can change across platforms, compilers, and compiler flags
can go a long way toward supporting reproducible experiments.
In this work, we offer the first automated testing aid called FLiT
(Floating-point Litmus Tester) that can show how much these
results can vary for any user-given collection of computational
kernels. Our approach is to take a collection of these kernels,
disperse them across a collection of compute nodes (each with
a different architecture), have them compiled and run, and
bring the results to a central SQL database for deeper analysis.
Properly conducting these activities requires a careful selection
(or design) of these kernels, input generation methods for them,
and the ability to interpret the results in meaningful ways.
The results in this paper are meant to inform two different
communities: (a) those interested in seeking higher performance
by considering “IEEE unsafe” optimizations, but then want to
understand how much result variability to expect, and (b) those
interested in standardizing compiler flags and their meanings, so
that one may safely port code across generations of compilers
and architectures. By releasing FLiT, we have also opened up the
possibility of all HPC developers using it as a common resource
as well as contributing back interesting test kernels as well as
best practices, thus extending the floating-point result-consistency
workload we contribute. This is the first such workload and
result-consistency tester underlying floating-point reproducibility
of which we are aware.

I. INTRODUCTION

There is ample evidence that result variations caused by
compiler flags and architectural heterogeneity lead to a serious
productivity cost, in addition to undermining trust in HPC
simulations. In the Community Earth Simulation Model [1],
a fused-multiply-add introduced by a compiler prevented the
scientists from obtaining reliable results. Architectural hetero-
geneity caused result inconsistency across MPI communica-
tions, leading to a deadlock [2] whose root-cause was non-
obvious for a week.

In the ideal world, HPC applications enjoy bitwise repro-
ducibility even after being optimized using differing compila-
tion flags or ported across CPU and GPU platforms. Clearly,
the presence of parallelism affects the reduction order of
routines, and the inherent non-determinism in applications
also prevents bit-wise reproducibility. But even assuming fully
deterministic and sequential applications, bitwise reproducibil-
ity is almost impossible to achieve in practice, unless one is
willing to avoid optimizations heavily.

Almost all realistic compilers provide higher optimization
levels (e.g., “-O3”) and also some “IEEE unsafe” optimization
flags that can together bring about a 5× factor of speed-
up (see Figure 5)—but also change the results. This is too

much performance gain to pass up, and so one must embrace
result-changes in practice. However, exploiting such compiler
flags is fraught with many dangers. A scientist publishing
a piece of code with these flags used in the build may not
really understand the extent to which the results would change
across inputs, platforms, and other compilers. For example, the
optimization flag -O3 does not hold equal meanings across
compilers. Also, some flags are exclusive to certain compilers;
in those cases, a user who is forced to use a different compiler
does not know which substitute flags to use. Clearly, tool-
support is needed to automatically check HPC routines for
portability—the goal of this work.

In one sense, despite the floating-point numbers in the result
changing, what finally matters is the “overall application se-
mantics.” Unfortunately, this notion is ill-defined: the extent of
result variability tolerated by a social network graph clustering
tool may not be the same as that tolerated by a piece of
climate simulation code. Thus, anyone building a tool to gauge
the extent of result variability across compilers and platforms
cannot tie the tool too deeply to a particular application class.
Their best hope is also to draw representative kernels from
different applications, and populate the tool with such kernels.
The tool can display the extent of result variability manifested
by various compilers, flags, and platforms, and leave the final
interpretation of the exact numbers to the domain scientist who
cares about the domains from which those kernels come from.
The kernel model can also make a tool that gauges variability
run faster, not burdened by the pressure of provisioning all the
memory and I/O resources needed by actual applications.

Specific Contributions: In this paper, we contribute a tool
called FLiT (Floating-point Litmus Tester) that is meant to
help those who seek to exploit result variability as well as to
avoid it (to the extent possible). Our main contributions are
the following:
• A detailed description of how we designed our litmus

tests that demonstrate flag-induced variability. Our approach
enables the community to critically examine and extend our
tests, thus allowing FLiT to grow in its incisiveness and
coverage as newer platforms and compilers emerge.

• We offer the downloadable and easy-to-use FLiT tool that
comes with many pre-built tests, test automation support,
and result assembly/analysis support as well as an initial
workload (extensible by the community) to assess result-
reproducibility1.

1 FLiT tool: pruners.github.io/flit, code at github.com/PRUNERS/FLiT

http://pruners.github.io/flit
https://github.com/PRUNERS/FLiT.git
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Fig. 1: 32-bit floating-point numbers along the real number line. There are
221 values between small tick marks. Subnormals are represented by SN.

• The approach we have developed to display at an intuitive
level the overall amount of variability exhibited by a com-
piler across the space of tests and flags.

Roadmap: We first present an overview of how compiler
optimizations treat floating-point expressions along with our
testing methodology and FLiT’s architecture in §II. We then
describe our testing results, including basic tests, GPU tests,
compiler insight-based tests, and Paranoia tests in §III. Para-
noia is one of the six tests highlighted in the authoritative
compilation Handbook of Floating-Point Arithmetic [3]. Vi-
sualizations (2D heat maps) of how four popular compilers
(one for GPU) treat floating-point optimizations are presented
in §IV. Concluding remarks, including related work and future
prospects are presented in §V.

II. METHODOLOGY

A. Background: Compiler-level Effects

General Overview of Floating-point Arithmetic: Figure 1
depicts the familiar floating-point number scale where the rep-
resentable numbers are classified into subnormal numbers (a
fixed-point representation at the smallest exponent supported
by floating-point), and normal numbers (all other representable
floating-point numbers). The spacing between normal numbers
doubles every successive binade (each increment of the expo-
nent puts us in the next binade). The magnitude difference
between 1.0 and the next higher representable floating-point
number is called machine epsilon and is 2−23 for single
precision and 2−52 for double precision. The unit in the last
place (ULP) is a function that when given a real value x yields
the distance between |x| and the next representable value,
going towards ∞ (see [4] for a full discussion). Whenever a
computed value falls on the number line, it is snapped to either
the nearest smaller or nearest larger representable floating-
point number, suffering a maximum of a half ULP error for
round to nearest.2

There are many hardware-level departures from this round-
ing model. Given the extensive use of addition and multi-
plication operations, many platforms support fused multiply
add (FMA) where hardware implementation allows an add
and a multiply to be done in a single step, resulting in
one less rounding step. Almost all these discussions apply
equally to scalar instruction sets and vector instruction sets.
In new instruction sets, there are introduced approximated
performant versions of many more operations. In [5], Intel
has introduced fast but approximate reciprocal and square-root

2Approximate division and square-root supported by many platforms does
not guarantee this error bound, but runs much faster.

Fig. 2: Compiler-Centric View of Floating-Point Optimizations. The compiler
moves from the outer layer to the inner layer, first performing higher-
level optimizations, then acting on small groups of instructions, and finally
optimizing single instructions. The library function implementation layer
stands out because it does not modify the user’s code.

vector instructions that operate in seven cycles but guarantee
only 38 of the 53 mantissa bits of accuracy.

Compiler Perspective of Floating-point Arithmetic: Viewed
from the point of view of a source program that enters a
compiler, the full picture of rounding is much more involved.
Figure 2 coarsely portrays the overall machinery of compiler
optimizations.

A user program enters through the outer-most layer where
it is subject to an optional series of optimizations such as
vectorization. Here, the floating-point effects of loops may be
changed. We have observed the icpc compiler turning a linear
addition (reduction) tree into a (somewhat) balanced vector
addition tree. Whether this optimization is applied or not may
depend on the loop trip count and other factors.

Next, the code penetrates the library function implementa-
tion layer where standard library functions (e.g., sin or exp)
may be treated in a special way or may be replaced with a
completely different implementation. For example, sin may
be approximated by a ratio of polynomials; or a specific “fast
path” special case rule (e.g., sin(π)) may be invoked.

The third layer (peephole optimizations) portrays the kinds
of optimizations we have observed where a compiler substi-
tutes pure sub-expressions in lieu of their L-values, triggering
algebraic simplifications. For instance, under certain circum-
stances, x/y may be changed to x · (1/y) to permit the use of
the reciprocal instruction.

At the central section (IEEE Standard Rounding and Fused
Multiply-Add), we portray standard instructions, many of
which guarantee a half-ULP error bound under the round
to nearest rule (many more rounding modes are available;
see [4] for details). As discussed earlier, the fused multiply-
add optimization is supported by many CPU and GPU types.
The general rule is that if the fma flag is applied and the
hardware supports FMA, then the optimization may happen
depending on whether the optimization is deemed productive-
enough (for the source program under consideration), by the
compiler.



The flags we administer in our experiments try to exercise
as many of the options in these layers shown in Figure 2. Tools
such as FLiT will become even more important when compiler
versions and associated flags that activate the aforesaid types
of fast and approximate instructions become available.

B. Defining Litmus Tests

By a litmus test, we mean a specific program fragment and
associated data, i.e., a pair (p, d) such that given a compiler
and a platform, a deterministic answer is produced (we do not
include non-deterministic tests). As testing is the crux of FLiT,
we cover this aspect under three headings: (1) classification of
litmus-tests (the types of programs/idioms p we choose) and
the scoring method; (2) kernels included (the actual programs
p chosen for each type of program) and reasons; and (3) input
fuzzing approach (the amount and spread of data values d that
are administered).

1) Classification of Litmus Tests and Scoring.: The crux
of all testing is to generate inputs meaningfully and have
an oracle (ground truth) that judges the success of testing.
Generally, our preference is to come up with tests that demand
the least amount of effort from users while also maximizing
impact. This means (1) ask users for as few (or no) data inputs,
and (2) provide an easy means to obtain the ground truth.
These goals are not easy to achieve while also offering tests
that offer sufficient coverage. Below, we describe three classes
of tests: fixed parameter tests, fixed input tests, and fuzzed-
input tests that progressively ask more of the user.
• Some tests are fixed parameter tests, meaning that we fix

the input once and for all using some rigid parameters, and
let the test generate instances under this class. Examples
in this space are triangles of a given base (b) and height
(h) whose area is the known ground-truth ((b · h)/2). The
test then automatically generates a family of triangles by
“shearing” a reference triangle of this base and height into
a family of triangle variants. It then uses various standard
formulae for calculating the area (e.g., Heron’s formula√
s · (s− a) · (s− b) · (s− c)). We then assign a natural

score by calculating the area of the sheared triangles and
finding out the error with respect to the ground-truth. This
score is the value returned to FLiT and stored in the database
for later analysis.

• A few tests are designed with fixed inputs. For example,
we take a convex hull calculation program and feed it a
polygon with a large set of vertices that were precalculated
with a random input generator. A good property of such
tests is that there is a discrete answer (namely, the number
of vertices in the computed convex polygon) that serves as
a score.

• We also have tests that fuzz inputs until a result-difference
is manifested. These tests again avoid examining the whole
space of inputs, and rather focus their attention on an
objective function. One example is: for a given flag, generate
a collection of K inputs i1, . . . , iK such that under these
inputs, the output scores are all pairwise distinct.

The nearly fifty tests bundled with FLiT fall into the
previously mentioned categories. We now detail some of the
specific tests included and our reasons for choosing them.

2) Kernels Included, and Reasons: As discussed earlier, our
list of litmus tests include fixed parameter tests, fixed input
tests and fuzzed input tests. We now provide some examples
of these tests included in our collection.

Fixed Parameter Tests: These include the following:
• A test TrianglePHeron employs Heron’s formula described

on Page 3.
• The test TrianglePSylvie is contributed in [6]. In our test-

ing, this test exhibited variability different from Heron’s
approach in terms of flags (detailed in §IV).

Fixed Input Tests: Many of our tests are of the fixed input
variety where input fuzzing does not play a significant role in
exhibiting variability. Some examples include these:
• SimpleCHull implements the convex hull test with points
a, b, c, d, e described on Page 3. This test can be run with a
well-chosen set of initial points a, b, c, d, e.

• In DoOrthoPerturbTest, we choose two vectors that are
orthogonal, with one vector along the x axis and another
along the y axis (based on a fixed input). We then rotate
one of the vectors by small increments, computing the dot
products along the way, and sum the dot-products. The
vectors are rotated by 200 ULPs per dimension.

• In DoHariGSBasic/DoHariGSImproved, we employ an
implementation of Gram-Schmidt orthoganalization [7].
Again, we seed these tests with a fixed input.

Fuzzed input tests: In these tests, we fuzz the inputs. Specific
tests in this family include DistributivityOfMultiplication idxN
for various N . This family of tests exercise the distributivity
property often exercised by compilers that transform an ex-
pression of the form (a ·b)+(a ·c) to an expression a · (b+c).
Exhibiting a test outcome due to flags required fuzzing the
inputs.

C. Putting it all together: FLiT Tool

Tests Compilers Flags

Compile

Exec: Host 1 Exec: Host N...

SQL Database

Save Results

Execute via SSH

Fig. 3: FLiT tool workflow

Figure 3 shows the overall organization of FLiT. As de-
scribed earlier, the FLiT tool receives a list of compilers, flags,
and hosts, and a collection of tests. The results of running



Flag GCC Clang Intel NVCC
-fassociative-math X X
-fcx-fortran-rules X
-fcx-limited-range X X
-fexcess-precision=fast X X
-fexcess-precision=standard X
-ffinite-math-only X X
-ffloat-store X X X
-ffp-contract=on X X
-fma X
-fmerge-all-constants X X X
-fno-trapping-math X X
-fp-model fast=1 X
-fp-model fast=2 X
-fp-model=double X
-fp-model=extended X
-fp-model=precise X
-fp-model=source X
-fp-model=strict X
-fp-port X
-freciprocal-math X X
-frounding-math X X X
-fsignaling-nans X X
-fsingle-precision-constant X X
-ftz X
-funsafe-math-optimizations X X
-march=core-avx2 X X
-mavx X X X
-mavx2 -mfma X X X
-mfpmath=sse -mtune=native X X X
-mp1 X
-no-fma X
-no-ftz X
-no-prec-div X
-prec-div X
--fmad=false X
--fmad=true X
--ftz=true X
--prec-div=false X
--prec-div=true X
--prec-sqrt=false X
--prec-sqrt=true X
--use_fast_math X X

TABLE I: All used floating-point flags

tests is reflected in scores. The FLiT tool performs many
compilations from all possible combinations of compilers and
compiler flags to generate a set of compiled binaries for each
host, with each binary containing all tests. The set of possible
compiler flags is limited to all combinations of an optimization
level (one of -O0, -O1, -O2, or -O3) and a single floating-point
flag from Table I. In this work, we chose to avoid combining
multiple compiler flags. This choice allows (1) the search
space to be significantly decreased and (2) the effect of each
flag to be isolated to simplify analysis.3

After this compilation phase, the binaries are copied to the
hosts. After executing each binary on their respective host, the
results are saved in an SQL database. This database can later
be mined through a versatile set of queries. There are stored
routines and python scripts that help users plot and analyze the
data stored in the database. However, the database is organized
simply and an experienced SQL user can mine data directly
from the database.

The FLiT tool intends to find reproducibility problems due

3 In fact, in some cases, the order in which certain flags are applied can
affect the compilation.

to variability introduced by compiler optimizations or differ-
ences in architecture. It is important to note that variability
can have other sources such as race conditions, randomization,
or even hardware failures. The FLiT tool is intended to run
on deterministic code. It is the responsibility of the user of
FLiT to first ensure that the code run by FLiT is deterministic,
perhaps using other tools. If this assumption of deterministic
code fails, then problematic decisions may be made based on
misleading information from FLiT.

III. EXPERIMENTAL RESULTS

In this Section, we present our experimental results to
show the effectiveness of FLiT in detecting compiler-induced
variability on one CPU architecture and one GPU architecture.
The hardware used an Intel Xeon CPU E5645 (Intel’s x86 64
Westmere microarchitecture) and an NVidia GM200 graphics
card (NVidia’s Maxwell architecture). These experiments were
performed using GCC 5.2, Clang 3.8, Intel compiler 16.0 and
CUDA 7.5.

A. Summation/Dot-product

Summation and dot-product are two centerpieces of HPC,
involved in one way or the other in a large number of
routines. We introduce two wrinkles: choose those algorithms
that have in-built error compensation steps which compilers
are known to remove by employing algebraic simplifications
that are true of integers and real numbers but not floating-
point numbers [8]. We study the Shewchuk algorithm for
accurate summation of floating-point values [9] that offers this
possibility for compiler optimization.

Algorithm 1 Shewchuk Summation Algorithm

1: procedure SHEWCHUKSUM(values)
2: partials← []
3: for each x in values do
4: newPartials← []
5: for each y in partials do
6: y, x← smallerFirst(x, y)
7: hi← x+ y
8: lo← y − (hi− x)
9: if lo 6= 0.0 then

10: newPartials.append(lo)
11: end if
12: x← hi
13: end for
14: if x 6= 0.0 then
15: newPartials.append(x)
16: end if
17: partials← newPartials
18: end for
19: return exactSum(partials)
20: end procedure

1) Shewchuk Summation Algorithm: The Shewchuk sum-
mation algorithm (Algorithm 1) was developed specifically
to implement arbitrary precision numbers using floating-point



numbers. It has been proven to be precise within the range
of representable numbers of the floating-point type that is
used [9]. Because 32-bit floating-point can store decimal
values with up to 7.2 digits of precision, performing 107

additions of number 1 is guaranteed to result in 107. In
order to demonstrate the difference between Shewchuk and
naı̈ve summation, we chose to the sequence [108, 1,−108, 1].
Under real arithmetic, the answer should be 2. The Shewchuk
algorithm successfully shows the sum to be 2.0 while the naı̈ve
summation yields 0.0.

Using the FLiT tool on a x86 64 architecture, the Shewchuk
summation algorithm was tested against the Intel compiler,
GCC, and Clang with combinations of optimization levels with
a single chosen flag. Of all of those combinations, only one
compiler flag made a difference. When compiled with flag
-funsafe-math-optimizations applied under GCC,
the algorithm becomes as bad as the naı̈ve implementation.
Neither the Intel compiler nor the Clang compiler upset the
Shewchuk algorithm.

Not only does the algorithm return the same performance
as the naı̈ve approach, but even after optimization, it proved
to be far more inefficient during execution.

2) Langlois Compensated Dot-Product: The algorithms in
this section employ Error Free Transformations studied in past
work (e.g., TwoSum [10] and TwoProd [11]). This approach
generates compensation terms (ε), in addition to the sum and
product. We chose these tests for their importance in the HPC
community and to demonstrate that they are fragile to some
degree and vulnerable to the effects of different compiler
configurations. Table II summarizes the extent of variability
for these algorithms (we present the number of equivalence
classes of scores).

Algorithm 2 LangDotFMA (naı̈ve FMA based dot-product)

1: procedure LANGDOTFMA(a,b)
2: sum← 0
3: for i from 1 to N do
4: sum← FMA(a[i], b[i], sum)
5: end for
6: return sum
7: end procedure

Test Name float double long double
langDotFMA 1 1 3
langCompDot 2 4 1
langCompDotFMA 6 5 4

TABLE II: Three dot product implementations along with how many different
answers were obtained by varying the compilation, separated by precision.

B. Preliminary Study of Variability in GPUs

1) Support for GPU Testing in FLiT: Modern HPC relies on
a variety of heterogeneous platforms to perform computation,
and GPU coprocessing is a popular choice. While GPUs
provide thousands of cores per unit, developers must decide

Algorithm 3 LangCompDot (compensating dot-product)

1: procedure LANGCOMPDOT(a,b)
2: sum, εsum, prod, εprod, comp← 0
3: for i from 1 to N do
4: prod, εprod ← TWOPROD(a[i], b[i])
5: sum, εsum ← TWOSUM(prod, sum)
6: comp← comp+ (εprod + εsum)
7: end for
8: return sum+ comp
9: end procedure

10: procedure TWOSUM(a, b)
11: sum← a+ b
12: T ← sum− a
13: ε← (a− (sum− T )) + (b− T )
14: return sum, ε
15: end procedure
16: procedure TWOPROD(a, b)
17: product← a · b
18: ε← FMA(a, b,−product)
19: return product, ε
20: end procedure

whether they may trust results provided by these alternate
computation mechanisms. An early study in this regard [12]
sheds light on the difficulties of porting critical medical
imaging software from CPUs to GPUs.

We provide GPU versions of most of our litmus-tests, along
with some basic math support (for vector and matrix math,
for instance). Additionally, adding a GPU test requires the
developer to override a virtual method which is a CUDA
kernel. After this, the test distribution and collection facilities
will populate results in the FLiT database.

2) Optimizations Supported: NVidia [13] supports four
optimizations in floating-point computation, with one ‘fast
math’. These are denormal handling: discard and flush to
zero, division and square root: use fast approximations, FMA
contraction: use FMA instruction and IEEE round to nearest.

Clearly, the fast-math flag causes the most variability,
as borne out by our experiments.

C. Tests Designed Through Compiler Insights

In order to make more targeted tests that leverage compiler
effects, we utilized the open source nature of GCC. Internally
GCC has an optimization structure whereby operations are
handled one at a time and each handler decides, based on
global flags and static analysis, whether a given optimization
is allowable.

For instance, if the hypot function is used in the source to
calculate the hypotenuse of a triangle, there are three classes
of optimizations that can be used. (1) If there are sign altering
functions applied to the arguments, such as - or abs, they
are always removed; (2) If the compiler can know that one of
the arguments is 0, then the function always is replaced with
fabs of the other argument. (3) If the compiler is allowed
unsafe math optimizations and it knows that both arguments
are equal, then the value is replaced with |x|

√
2.



1) Summary of Tests Based on Compiler Insights: We now
summarize all tests that were derived thanks to our insights
into GCC.

Reciprocal Math: We discovered that under many circum-
stances, GCC will look for code sequences of the following
kind, and upon seeing three uses of division by m, will
first compute the reciprocal of m and then multiply it with
a through d. Thus, we can derive a score as follows (in
algorithm 4), and observe a difference with respect to -O0.

Compile-time Versus Runtime Evaluation: The following
test (Algorithm 5) reveals our understanding of how a com-
piler’s behavior may be affected by constant propagation, as
well as compile-time and run-time decisions.

Algorithm 4 ReciprocalMath: cause reciprocal optimization

1: procedure RECIPROCALMATH(a,b,c,d,m)
2: a← a/m
3: b← b/m
4: c← c/m
5: d← d/m
6: return a+ b+ c+ d
7: end procedure

Algorithm 5 SinInt Test

1: procedure SININT
2: zero← (RAND()%10)/99
3: return SIN(π + zero)/SIN(π)− 1
4: end procedure

Under IEEE assumptions, this should always be zero. Under
most non-IEEE assumptions this should be zero, since both
calls to sine are given the same number.

However, the difference arises from constant propagation,
allowing std::sin(pi) to be evaluated at compile time,
but the other call to sin is left to the runtime!

Any difference between the compile time and runtime
implementations of sin near pi will therefore manifest in
the test result. A result we have obtained from this code is
−3.30261141e− 05 for the double type.

D. Paranoia Tests

Milestone ICPC GCC CLANG
10 0 9 0
30 279 0 0
50 4 11 18

121 0 2 2
150 55 64 70

Goal: 221 106 127 138
Total 444 213 228

TABLE III: How many flag combinations stopped at each milestone in the
Paranoia test.

1) Overview: Paranoia is a full suite of tests developed
by William Kahan in 1983 to verify floating-point arithmetic
specified by the IEEE floating-point standard draft at the time.
We have inserted this test suite as a single test inside of the
FLiT framework. Although these tests were originally intended
to test implementation against the IEEE standard, we use this
well established suite to look for compiler-induced variability
due to optimizations.

Because of its size, the Paranoia test suite has been separated
into milestones that range from 1 to 221. The test was modified
to stop at the milestone of the first detected test point failure.
These milestones serve as stumbling blocks for the optimizer.
We focus only on these stumbling block milestones which can
be seen in Table III for each of the tested compilers.

2) Results: Each milestone in Table III represents a differ-
ent type of test failure. The failure on milestone 10 indicates a
loop construct executing infinitely due to unsafe optimizations
performed by GCC with the -funsafe-math-optimi-
zations flag. The Intel compiler was the only one blocked at
milestone 30, which is symptomatic of inconsistencies induced
by using higher precision representations for intermediate
computations. Stoppage at milestone 50 was caused by a large
number of flags. The assertion at milestone 50 checks the so-
called “sticky bit” and asserts (1.75 − ε) + (ε − 1.75) = 0
where ε is machine epsilon. Milestone 121 fails if (x 6= z)
and (x − z = 0). Milestone 150 has a series of complicated
computations involving logarithms, the pow function, multipli-
cation, and division. There are many optimizations that break
this assertion in different ways.

This test coupled with the FLiT tool allow us to gain
valuable insights into compilers and their numerous flags. Cer-
tainly optimizations are desired for improved performance, yet
often we unknowingly sacrifice reproducibility or necessary
guarantees.

IV. VISUALIZING FLIT RESULTS

The Figures in 4 present our visualizations for NVCC,
Clang, GCC and ICPC.

Figure 4 is limited to the unoptimized compilation (-O0
with no flags) and all flags with the -O3 optimization level.
Those flags that showed no variability were removed from the
plot. Also all tests that showed no variability were removed
from the plot for conciseness. The results from the unopti-
mized compilation is considered the “reference answer” rather
than the ground truth answer because, in general, it may not
be the most accurate answer. For example, FMA provides a
more accurate computation for a · b+ c than the unoptimized
computation.

Each column of a heat map is independent. For example,
in Figure 4(d), with the TrianglePSylv test, we see that
column ranges from 0 to 3, meaning for that test code, and
a static input value, the output from the algorithm ranged
from four distinct values. The only variable here was the
compilation flags given to the ICPC compiler. The different
colors do not mean anything more than being different outputs
from other colors. We do not encode here a “distance” from



(a) NVCC compiler for CUDA

(b) GCC compiler

(c) Clang compiler

Legend
0: Unoptimized / Ground Truth
1: Difference #1
2: Difference #2
3: Difference #3
4: Difference #4

(d) ICPC compiler

Fig. 4: Heat maps of compiler-induced variability. The horizontal axis of each heat map is which test was executed. The vertical axis is the compilation flags
provided. In each case, the unoptimized version (e.g. “-O0”) returns the reference answer shown in black. Anything not black gave a different answer than
the unoptimized compilation. Note: each column is independently scaled since they are independent tests. This demonstrates how many different answers are
achieved varying only compiler flags for fixed code and fixed algorithm inputs. Litmus tests and compilations with no variability are excluded from these
heat maps. To keep the heat maps of reasonable size, only the unoptimized compilation and -O3 are shown.

the true answer, which is shown on the figure as black. One
may wonder how different these answers are. This difference
information is stored in the database and can be mined by the
user if desired. For these small litmus tests, the answers are
very similar, which is not surprising considering their size.
However, that misses the point we are presenting – that static
code can be compelled to generate up to four different values
simply by compiling it in different ways. It will be informative
to investigate how many different answers a complex piece of

real-world code is capable of generating.
Note that in Figure 4, the compilers are separated in their

analysis. This is for two reasons: (1) some compiler flags do
not apply to all compilers and (2) compiler flags and optimiza-
tion levels do not have uniform meaning across compilers.
We can compare compilers in isolation to gain larger trends.
The Clang compiler in Figure 4(c) is the least aggressive with
unsafe floating-point optimizations. The ICPC compiler in
Figure 4(d) is the most aggressive and is aggressive in different



ways allowing for the four different behaviors by some of
the tests. The GCC compiler in Figure 4(b) is primarily
aggressive with the -funsafe-math-optimizations.
That by itself is not as surprising as discovering that the other
flags for GCC are bitwise reproducible for all but two litmus
tests.

Only tests that showed variability are shown in Figure 4.
Some litmus tests were expected to show variability but did
not. These tests provide examples of code that, for these
compilers and this architecture, is reproducible under all
compilations. These tests are not analyzed in this paper. Users
can download and experiment with which kinds of operations
have reproducibility problems and which kinds do not.

There is another visualization that can be useful on an
individual test basis. The FLiT tool is primarily an aid
to help the developer navigate the tradeoffs between re-
producibility and performance. In Figure 5(a), we took a
single example litmus test, TrianglePSylv, and show the
speedup compared with the unoptimized version of gcc (-O0
with no other flags). There is a clear indication here of
which compilations get the same answer as the unoptimized
compilation (as seen with the blue dots). Using this chart,
one can determine very easily the most performant compi-
lation for this particular test that maintains reproducibility,
clang++ -O1 -fexcess-precision=fast, clocked
at a speedup of 2.66. To see that in comparison,
the fastest non-reproducible compilation was g++ -O3
-funsafe-math-optimizations at a speedup of 4.69.
This means that for this particular kernel, if we sacrifice
reproducibility, we can get a speedup of 1.77 from the fastest
reproducible compilation. This kind of analysis is invaluable
to developers weighing the tradeoff between reproducibility
and performance.

In the other graph, Figure 5(b), we see a similar
speedup curve, but a very different reproducibility pro-
file. In this particular case with the TrianglePHeron
algorithm, the fastest compilation is also reproducible at
a speedup of 5.86. This example is particularly interest-
ing because (1) the fastest reproducible compilation is the
faster than the fastest non-reproducible compilation (by a
small margin), and (2) the fastest reproducible compilation
was clang++ -O3 -funsafe-math-optimizations
and the fastest non-reproducible compilation was g++ -O2
-funsafe-math-optimizations. Despite having the
same compilation flags, clang++ maintained reproducibility
and g++ did not. Looking back at Figure 4, one might
conclude that the clang compiler is not as aggressive as
gcc in optimizations, yet it can achieve similar performance,
at least for the TrianglePHeron example, but not for the
TrianglePSylv example.

V. CONCLUDING REMARKS

We now present a few key related pieces of work and also
sketch some ideas for future work.

Related Work: In general, reproducibility has received a

significant amount of attention [14]–[16]. This paper and its
ideas were greatly inspired by the excellent empirical study
called Deterministic cross-platform floating-point arithmetics
by Seiler [17], a study done in 2008 but does not seem to have
been continued.

The possibility of cross-platform portability leading to
wrong scientific conclusions being drawn is raised in [1].
They also release a tool KGEN [18] that extracts computation
kernels from a program in order to study them in isolation
from the larger system. A complementary approach that the
CESM team took was using Ensemble-based consistency [19].
This involves using an ensemble, or collection of runs that
simulate the same climate mode, using randomly perturbed
initial conditions. This way, a signature of the model is
generated, represented as a distribution of the observed model
states. This signature is compared to the state of subsequent
runs where the validity is unknown, such as after switching
platforms or adding features to the code base. We envisage
our work helping with efforts such as KGEN in helping
prioritize one’s explorations based on flags known to cause
the highest amounts of variability. We anticipate there to be
eventually community-specific workloads as well as result-
consistency assessment methods that can be derived from the
FLiT framework and its initial workload.

There have been publications that describe the general lack
of portability across architectures and platforms such as from
Intel [20] and Microsoft [8] and also pertaining to specific
programming languages such as Java [21]. Intel reports on
compiler reproducibility [20] as it relates to performance and
cross CPU compatibility. They characterize their own fast
math flag as follows: “The variations implied by unsafe are
usually very tiny; however, their impact on the final result of a
longer calculation may be amplified if the algorithm involves
cancellations.” This extends to Fortran and MPI, with ANSI
Fortran allowing re-association that obeys parentheses, and
MPI having routines that are not guaranteed to be exact or
reproducible.

For transcendentals, Intel makes a modest effort toward
compatibility with the flag no-fast-transcendentals,
but they have no real guarantees relating to its use cross core or
cross system. In the end, Intel recommends that if reproducibil-
ity is desired, the best one can do is have portability across
different processor types of the same architecture. While the
use of fp model precise is more reproducible, even here there
are no guarantees.

There have been many efforts that address the general lack
of robustness in floating-point computations. Bailey’s high
precision math [22] work addresses ill-conditioned situations
by offering multiple higher precisions. The MPFR library [23]
is another effort offering higher precision when necessary.

Future Work: We plan to convert FLiT into a library that the
applications can call into before they invoke a specific kernel
hidden within the application. This way, the kernels themselves
can be present in the context of the full application, and enjoy
the inputs that the full application provides. FLiT can run the



(a) TrianglePSylv

(b) TrianglePHeron

Fig. 5: Speedup of two different algorithms for calculating the area of morphing triangles (using 32-bit floats) as compared to the unoptimized version using
GCC. This plot also shows which ones are safe (with a blue dot) and which ones get a different answer from the unoptimized version (with a red x). Only
gcc and clang were considered for this speedup comparison.

specific kernel embedded within the application under different
optimizations, dynamically linking different binaries generated
for it. There are two advantages to this approach: (1) avoiding
the headache of pulling out a kernel and designing its input
generators; (2) the ability to design application-specific result
acceptance criteria, thus being able to move closer toward the
goal of making a recommendation as to which flags are safe
and which to avoid.

The testing method described in §III-C depended on our
being able to read the source of a compiler and then design
tests with this insight. This is undoubtedly tedious and error

prone. A much more convenient and scalable approach will
be for compiler writers to provide such tests, especially given
that reproducibility is growing in importance.

In ongoing work, we are investing significant effort in
collecting and classifying kernels from HPC researchers so as
to extend the existing workload of FLiT. This may also help
maintain a well calibrated collection of kernels that exhibit
variability. It may then become possible to pattern-match a
given user program and flag the presence of these kernels to
provide an earlier warning to application scientists as to the
portability of their code.



This work avoided combining compiler flags in an effort to
reduce the search space and to isolate the effect of individual
flags. How compiler flags interact and influence one another
is the subject of future work.

Finally, we have demonstrated how compilers may effect
small coding examples called litmus tests. This allowed us
to isolate specific types of variability invoked by the compiler
optimizations. However, we are interested to see how the FLiT
framework could be used to seek reproducibility of large real-
world code bases. This investigation is ongoing.
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