
Multi-Level Analysis of Compiler-Induced Variability and
Performance Tradeoffs

Michael Bentley

Ian Briggs

Ganesh Gopalakrishnan

mbentley@cs.utah.edu

ianbriggsutah@gmail.com

ganesh@cs.utah.edu

University of Utah

Dong H. Ahn

Ignacio Laguna

Gregory L. Lee

Holger E. Jones

ahn1@llnl.gov

lagunaperalt1@llnl.gov

lee218@llnl.gov

jones19@llnl.gov

Lawrence Livermore National Laboratory

No Yes

NoYesCreate FLiT
tests

User
Code Deterministic?

Reproducibility
and Performance

Is the
fastest repro
sufficient?

Done

Library, Source,
and Function

Blame

Debug Issue
using standard

tools

Determinize

Run FLiT Tests FLiT Bisect

Done

Figure 1:Multi-levelworkflow. Levels are (1) determine variability-inducing compilations, (2) analyze the space of reproducibil-

ity and performance, and (3) debug variability by identifying files and functions causing variability.

ABSTRACT

Successful HPC software applications are long-lived. When ported

across machines and their compilers, these applications often pro-

duce different numerical results, many of which are unacceptable.

Such variability is also a concern while optimizing the code more

aggressively to gain performance. Efficient tools that help locate

the program units (files and functions) within which most of the

variability occurs are badly needed, both to plan for code ports and

to root-cause errors due to variability when they happen in the

field. In this work, we offer an enhanced version of the open-source

testing framework FLiT to serve these roles. Key new features of

FLiT include a suite of bisection algorithms that help locate the root

causes of variability. Another added feature allows an analysis of the

tradeoffs between performance and the degree of variability. Our

new contributions also include a collection of case studies. Results

on theMFEMfinite-element library include variability/performance

tradeoffs, and the identification of a (hitherto unknown) abnormal

level of result-variability even under mild compiler optimizations.

Results from studying the Laghos proxy application include identi-

fying a significantly divergent floating-point result-variability and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6670-0/19/06. . . $15.00

https://doi.org/10.1145/3307681.3325960

successful root-causing down to the problematic function over as

little as 14 program executions. Finally, in an evaluation of 4,376

controlled injections of floating-point perturbations on the LULESH

proxy application, we showed that the FLiT framework has 100%

precision and recall in discovering the file and function locations of

the injections all within an average of only 15 program executions.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Software maintenance tools; Object oriented frameworks;

Process validation; Compilers.

KEYWORDS

debugging, compilers, code optimization, reproducibility, perfor-

mance tuning

ACM Reference Format:

Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, Dong H. Ahn, Ignacio

Laguna, Gregory L. Lee, and Holger E. Jones. 2019. Multi-Level Analysis

of Compiler-Induced Variability and Performance Tradeoffs . In The 28th
International Symposium on High-Performance Parallel and Distributed Com-
puting (HPDC ’19), June 22–29, 2019, Phoenix, AZ, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3307681.3325960

1 INTRODUCTION

Tools and techniques that mitigate the effects of compiler-induced

result-variability are increasingly important to preserve the value

of our investments in scientific software. As a specific example,

long-lived scientific applications must be able to take advantage

https://doi.org/10.1145/3307681.3325960
https://doi.org/10.1145/3307681.3325960

of different (or newer) machines and their compilers (as well as

their optimization flags) while maintaining result integrity and

achieving higher performance. Unfortunately, there are currently

no techniques and tools that help designers debug field issues that

arise during such code ports, especially in the context of large code-

bases and thousands of functions. At present, designers end up

wasting their time by manually debugging field issues. Also, code

that is shipped without portability testing may harbor the potential

to generate unacceptably significant result variations even under

standard optimization. An incident of this type was reported by

designers of the Community Earth System Model (a large-scale cli-

mate simulation) [5] where the problem was noticed while porting

code to a new machine. After weeks of painstaking investigations,

the problem turned out to be the introduction of fused-multiply-add

instructions by the compiler, taking advantage of this new capa-

bility offered by their target architecture. This and other incidents

reported in this paper underscore the need for an ecosystem of

freely available tools that can help scientific programmers. To the

best of our knowledge, FLiT is the first such tool.

Definition of Reproducibility.Given the growing heterogene-

ity of hardware and software, one cannot always define reproducibil-

ity as achieving bitwise reproducible results. Instead, we view a

reproducible computation as one that produces a result within an

“acceptable range” of a trusted baseline answer. In FLiT, we rely on

the application developer to provide an acceptance testing function

that (indirectly) defines this range.

A Motivating Problem. Scientific HPC applications can be

large and complex, often simulating physical phenomena for which

expected outcomes are not known. As a result, there is a particular

compilation configuration that is trusted because it has passed the

test of time (i.e., it is believed to be correct from the first version),

and is considered the baseline compilation configuration.
When developers port applications to a different compiler or

a new version of the same compiler, all acceptably good compila-

tion configurations must deliver answers empirically close to the

baseline, either based on designer experience or in a more rigorous

mathematical sense, such as meeting an error norm. When results

deviate from acceptable levels, support tools must help locate the

issue within a short distance of the root cause.

Our Contributions.

(1) A significantly extended version of the FLiT [34] testing tool
1

that is now capable of handling real applications that are either

sequential or contain deterministic OpenMP or MPI code.

(2) Results that capture how performance varies versus repro-

ducibility on non-trivial applications.

(3) A suite of novel bisection algorithms that help identify code

locations responsible for result-variability,

(4) A workflow (Figure 1) providing steps for practitioners to ana-

lyze result and performance variability.

(5) Experimental validation using real-world HPC miniature ap-

plications that include Laghos [13] and LULESH [21], and the

MFEM library [1]. These studies quantitatively evaluate the

effectiveness of our Bisect algorithms as well as empirically

assess the real-world applicability of the workflow.

New FLiT features. The new FLiT features are:

1
This version of FLiT source code is available at https://github.com/PRUNERS/FLiT.git

(1) A multi-level analysis workflow supported by FLiT (Figure 1),

resulting in root-cause analysis of compiler-induced result-

variability down to individual source files and functions. Root-

causing is achieved by FLiT’s Bisect algorithms (§2).

(2) An assessment of the efficacy of Bisect on real applications and

a fault injection study (§3);

(3) The results of applying FLiT, for the first time, on two real-world

systems: MFEM and Laghos (§3).

Compiler-Induced Variability Example. Compiler-induced

variability is widely experienced but seldom systematically solved.

We provide an example to help the reader better understand the util-

ity of a tool such as FLiT. At one stage of the development of Laghos,

an open-source simulator of compressible gas dynamics [14], the

project scientists were seeking higher optimizations provided by

the IBM compiler, xlc. Moving from optimization level -O2 to -O3,
the ℓ2 norm of the energy over the mesh went from 129,664.9 to

144,174.9 in a single iteration — an 11.2% relative difference caused

merely by the optimizations. One would expect variability around

10
−8
% or less. Also, the density of the simulated gas became nega-

tive — a physical impossibility. Even more striking was the runtime

difference: from 51.5 seconds to 21.3 seconds for the first iteration,

which is a speedup by a factor of 2.42. In Section 3, we describe

how FLiT came to the Laghos designers’ rescue.

Paper Organization and Result Highlights. In Section 2, we

introduce our multi-level analysis workflow and tooling spread

over three phases. The first phase identifies which compiler opti-

mizations cause reproducibility problems. The second phase helps

to analyze the performance resulting from the optimizations, thus

assisting the programmer in arriving at the most performant of

acceptable solutions. The third phase helps characterize which

functions within the code exhibit variability under compiler opti-

mizations, sorted by the most influential. The last phase involves

our suite of bisection algorithms.

We contribute two key assumptions that help make bisection

practical: (1) The Unique Error assumption, meaning for a particular

value of variability, the set of responsible application functions is

unique. This assumption frequently holds in practice, as demon-

strated by our results. Without this assumption, we will have an

exponential search problem to solve. (2) The Singleton Blame Site
assumption, which means that a single file or function, by itself,

causes variability. In other words, it is not necessary to have two

or more files or functions to be jointly acting to induce variability.

This assumption also holds in practice, as demonstrated by our

results. The Bisect algorithm has a built-in dynamic verification

assertion that verifies this assumption. Section 2.2 explains how

these assumptions are central to achieving an overall O(k log(N))
runtime complexity (for k “problematic” files/symbols) as opposed

to the O(2N) complexity, if we were to relax these assumptions.

In navigating performance and reproducibility in the MFEM li-

brary (Section 3), we found that 14 of 19 examples exhibited the

highest speedups with compilations that are bitwise reproducible.

Two of those 14 showed bitwise reproducibility across all tested

compilations. These results indicate reproducibility need not always

be sacrificed for performance gains. We demonstrate our Bisect al-

gorithm on all found variability-inducing compilations from MFEM

https://github.com/PRUNERS/FLiT.git

to evaluate the effectiveness of Bisect and to empirically character-

ize the proclivity of a compiler to introduce variability. For MFEM,

we provide the “best average compilation” for each compiler over

the set of 19 MFEM examples, along with a rough idea of how often

each compiler induces variability. Also, thanks to FLiT, we have

located an unexpected result deviation in one test of MFEM which

resulted in a 180% relative error under a mild compiler optimization.

FLiT could root-cause this failure to a single function.

FLiT could also discover and root-cause a known reproducibility

bug in the Laghos proxy application. The benefit of FLiT is the

automated re-discovery of this critical bug (first located through

a two week ad hoc manual search). This automated re-discovery

took only 14 application runs under Bisect, taking only 40 minutes.

To quantify the efficacy of our Bisect algorithm even more

sharply, we implemented a custom LLVM pass to inject floating-

point perturbations in the LULESH proxy application. We achieved

precision and recall of 100% at identifying the source of variability,

or reporting that the injection was benign and caused no variabil-

ity. Each injection took only 15 application executions on average

during the Bisect search to find the function exhibiting variability.

2 WORKFLOW FOR MULTI-LEVEL ANALYSIS

Key to the design of FLiT is a choice of approaches and algorithms

that are essential to making an impact in today’s HPC contexts. We

now present some of these choices and describe the workflow in

Figure 1.

We define a compilation as a triple (Compiler, Optimization

Level, Switches) applied to a subset of source files in an applica-

tion. This triple contains the full configuration of how to compile

a source file – as far as optimizations and compiler options are

concerned. Our work helps hunt down compilations that cause

result-variability.

Handling vendor-specific and general-purpose compilers.

Vendor-provided compilers are vital to achieving high performance,

especially within newly delivered HPC machines. Given this, FLiT

cannot rely on technologies that do not generalize to many compil-

ers and architectures. Some such technologies are binary instrumen-

tation tools such as PIN (for Intel architectures) and instrumentation

passes based on LLVM (for LLVM-based compilers only).

Applicability in HPC build systems. Productivity-oriented

approaches in HPC critically depend on infrastructures such as

Kokkos [15] and RAJA [17] that synthesize efficient code, naturally

affect loop optimizations, and smoothly incorporate parallelism.

Framework-specific annotations burden static analysis based ap-

proaches because each framework requires separate support and

implementation. FLiT avoids this by dealing with compiled object

files directly.

Use designer-provided tests and acceptance criteria. Agen-

eric tool such as FLiT cannot have pre-built notions of which results

are acceptable. Therefore FLiT engineers its solutions around C++

features to require a minimal amount of customization. For each

test, the user creates a class and defines four methods:

• getInputsPerRun: Simply returns an integer – The number of

floating-point values taken by the test as input (between 0 and

the maximum value of size_t)

• getDefaultInput: Returns a vector of test input values. If there
are more values here than specified in getInputsPerRun, then
the input is split up, and the test is executed multiple times, thus

allowing data-driven testing [6].

• run_impl: The actual test that takes a vector of floating-point
values as input and returns a test result. The test result can either

be a single floating-point value, or a std::string. FLiT provides

the return type of std::string so that the user can use more

complex structures returned, such as arbitrary meshes.

• compare: Takes in the test values from the baseline and testing

compilations, and returns a single floating-point value. If the two

values are considered equal, then this function should return

0. Otherwise, this function should return a positive value. This

function behaves as a metric between the two values and is how

FLiT determines if there is variability in a compilation compared

to the baseline.

There are two variants of this compare function, one for long
double values and another for std::string values. The user is

only required to implement the associated variant for the return

type of their test.

FLiT requires deterministic executions, as shown in Figure 1. On

a given platform and input, we must be able to rerun an application

and obtain the same results as measured by the user-provided

compare function. There are many deterministic HPC applications,

even many MPI and OpenMP applications that provide run-to-run

reproducibility. Therefore, FLiT supports the use of deterministic

MPI and OpenMP. As depicted in Figure 1, if an application is

not deterministic, then external methods can be used to make it

deterministic. For example, one can identify and fix races with a race

detector such as Archer [4], or directly determinize an execution

using a capture-playback framework such as ReMPI [33].

Currently, support for GPUs does not exist in FLiT. With GPUs,

the scheduling of warps can cause floating-point reassociations,

thus changing execution results.
2
. Given the rapid evolutions in

the GPU-space, this is future work

2.1 Bisect Problem

The Bisect problem handled by FLiT is multifaceted: it must help

locate variability-inducing compilations while also checking for

acceptable execution results. Unfortunately, modern compilers are

quite sophisticated, and their internal operation involves many

decisions such as link-time library substitutions, the ability (or

lack of) to leverage new hardware resources, and many more such

options that affect either performance or the execution results.

This richness forces us to adopt an approach that is as generic

as possible and consists of compiling different files at different

optimizations and drawing a final linked image from this mixture.

The granularity of mixing versions in our case is either at a file

level, or (by using weak symbols and overriding) at a function

level
3
. When we encounter a numerical result difference during

2
There is little external control one can exert on GPU warp schedulers.

3
The approach of searching by overriding symbols is one that potentially creates

“Frankenbinaries.” For example, we may link together an Intel-compiled function with

a GCC-compiled function at differing optimization levels. Our symbol-based search

consists of first creating various binaries (a one-time cost) and merely going through

different linkage combinations - which typically takes far less time than a compilation.

Algorithm 1 Bisect Algorithm

1: procedure BisectAll(Test, items)
2: found ← { }
3: T ← Copy(items)
4: while Test(T) > 0 do

5: G,next ← BisectOne(Test, T)
6: found ← found ∪ next
7: T ← T \G

8: assert Test(items) = Test(found)
9: return found

1: procedure BisectOne(Test, items)
2: if Size(items) = 1 then ▷ base case

3: assert Test(items) > 0

4: return items, items

5: ∆1,∆2 ← SplitInHalf(items)
6: if Test(∆1) > 0 then

7: return BisectOne(Test,∆1)

8: else

9: G,next ← BisectOne(Test,∆2)

10: return G ∪ ∆1,next

our bisection search, we allow existing tools to help with root-

causing. Thus FLiT’s task is to isolate the problem down to a file or

a function.

An essential practical reality is that hundreds of functions com-

prise a large application spread over multiple files. It is possible that

the compiler optimization may have affected any subset of these

functions to cause the observed variability. The objective of FLiT’s

Bisect algorithm is to identify and isolate all functions that have

contributed to result-variability.

In a general sense, one faces the daunting prospect of identifying

those functions that are “coupled,” meaning they must be optimized

together in a certain way to cause result-variability. The need to

identify “coupled” functions would lead to a search algorithm that

considers all possible subsets of files or functions — an exponen-

tial problem that, if implemented as such, would result in a very

slow tool. The singleton blame site assumption alluded to earlier

reduces the search space considerably, as discussed in more depth

in Section 2.4.

2.2 Bisect Algorithm

The Bisect algorithm (Algorithm 1) follows a simple divide and

conquer approach. It takes two inputs: (1) items , which is a set of

files/functions in the compilations to be searched over; and (2) A

test function Test that maps items to a real value that is greater

than or equal to 0. A non-zero output indicates the existence of

result variability and also helps us sort the problematic items (files

and functions) in order of the degree of variability they induce

by themselves. It also allows us to formulate the BisectBiggest

algorithm (discussed in Section 2.5). A zero output indicates that

there is no result-variability.

Notice that procedure BisectOne (helper to procedure Bisec-

tAll) does not merely return the next found element. It instead

returns a pair of two sets. The first set contains elements that

can safely be removed from future search steps. The second is a

Step items fed to Test in Algorithm 1 result

1 1 2 3 4 5 6 7 8 9 10 ✘

2 1 2 3 4 5 · · · · · ✘

3 1 2 · · · · · · · · ✘

4 1 · · · · · · · · · ✔

5 · 2 · · · · · · · · ✘

6 x x 3 4 5 6 7 8 9 10 ✘

7 x x 3 4 5 6 · · · · ✔

8 x x · · · · 7 8 · · ✘

9 x x · · · · 7 · · · ✔

10 x x · · · · · 8 · · ✘

11 x x x x x x x x 9 10 ✘

12 x x x x x x x x 9 · ✘

13 x x x x x x x x x 10 ✔

Result 2 8 9

Figure 2: Illustrative example of BisectAll (Algorithm 1).

The numbers represent tested elements. The dots repre-

sent elements within the current search space, but not be-

ing tested. The small x’s represent elements that have been

removed from the search space because of previous itera-

tions of Bisect. The ✘ means Test(items) > 0 and ✔ means

Test(items) = 0. The found variability-inducing items are

{2, 8, 9}. Each row represents a separate executable by link-

ing together the items under test from the variable compila-

tion and all others from the baseline compilation.

singleton set — the “found element” in essence. As line 2 of Bi-

sectOne indicates, this means that Test (items) is greater than 0,

i.e., the presence of this singleton set, namely items , in a compi-

lation causes result-variability. That means we have successfully

located one variability-inducing file/function. We now return the

pair items, items indicating: (1) that we found items , and (2) we

can exclude items in future searches (line 7 of BisectAll). These

elements are then removed from the search space in future Bisect

searches (as seen on line 7 of procedure BisectAll in Algorithm 1).

This removal is not necessary for the algorithm to work correctly, or

even for the complexity, but it is merely an optimization that allows

us to prune the search space if we happen to find elements which

cause the given test to pass. This optimization is one significant

deviation from Delta debugging [41] — a point discussed under the

heading Assumption 2 of Section 2.4.

As a specific example of this strategy, notice what we do on line

9 of BisectOne which is when Test(∆1) = 0. Then we suppress

future testing on G ∪ ∆1.

The Test function that is passed to the Bisect algorithms is a

user-defined metric that has the following attributes:

• Maps a set of items to a non-negative value, [0,∞).

• Test(items) = 0⇒ there are no variability causing items

• Test(items) > 0⇒ there is at least one variability causing item

In Figure 2, we can see an example of running Algorithm 1.

The ✔ symbol indicates an instance when Test(items) = 0 and

the ✘ symbol indicates Test(items) > 0. Horizontal lines separate

individual invocations of BisectOne. The small X’s in Figure 2

Figure 3: Highlights the difference between File Bisect and

Symbol Bisect. File Bisect mixes compiled object files. Sym-

bol Bisect marks some symbols as weak within object files

and links in both copies of the object file. The functions in

bold are strong symbols that are available in the final exe-

cutable. Only Symbol Bisect requires the -fPIC flag so that

we can match up functions arbitrarily.

refer to the extra set of elements returned by procedure BisectOne

indicating a set of elements to discard for future search.

Although it is true that for this example, it would be cheaper

to do a linear search over the elements, a linear search would al-

ways be O(n), where n is the total number of elements. This Bisect

algorithm has worst-case complexity O(k logn) and best-case com-

plexity O(k logk) where k is the number of variability-causing

elements to find. Section 2.4 discusses these bounds in more detail.

2.3 Implementation of Bisect

The Bisect search algorithm utilizes a well-known divide and con-

quer technique but applying it to find the functions causing vari-

ability is nontrivial. Note, the terms “function” and “symbol” are

used interchangeably, although symbol usually refers to a compiled

version of the function. Since the problem is to find all functions

causing variability, we could group all functions of the application

and apply the Bisect algorithm. But, for anything more substan-

tial than small applications, the search space becomes too large to

search effectively. Instead, akin to how Delta Debugging [41] was

extended to work on hierarchical structures [27], we perform this

Bisect algorithm on a dual-level hierarchy, first by searching for

the files where the compiler caused variability, and then searching

the functions within each found file. This hierarchical approach

allows us to reduce the search space considerably, by splitting up

the full Bisect search into much smaller separate searches.

The Test function used for File Bisect links together the object

files generated from the two different compilations, some from the

variability-inducing compilation, and the rest from the baseline

compilation. The Test function passed into the Bisect algorithm is

generated from the baseline compilation, the variable compilation,

and the full list of source files. When a set of source files are passed

into the Test function, those files are compiled with the variable

compilation with all others compiled with the baseline compilation,

and then the two sets of object files are linked together. We provide

a visualization of File Bisect in the left half of Figure 3.

It is possible that the baseline and variable compilations use

different compilers, in which case this approach depends heavily

on binary compatibility between the two compilers [2, 18]. Since

many compilers implement their own C++ standard library (since

C++ 11), one achieves binary compatibility only by forcing all

compilers to use a common implementation. In our experiments,

we chose to have all compilers use the GCC implementation of the

C++ standard library.

In the File Bisect phase, the Bisect algorithm finds all variability-

contributing object files when compiled with the variable compila-

tion. Each compiled object file comes from a single source file, and

therefore can indicate each responsible source file.

Having finished finding all variability-contributing object files,

we move on to finding the variability-inducing symbols within the

found object files (i.e., methods and functions). This second pass

over symbols, called Symbol Bisect, is performed individually on

all symbols within each found variability-producing object file.

Exploiting Linker Behavior and Objcopy: The method for se-

lecting functions from two different versions of the same object file

is done by making use of strong and weak symbols and is shown

in the right half of Figure 3. At link time, if there is more than one

strong symbol, the linker reports a duplicate symbol error. If there

is more than one weak symbol, then the linker is allowed to choose

which one to keep and discards the rest. In the case there is one

strong symbol and one or more weak symbols, the linker keeps

the strong symbol and discards all weak symbols. It is the last case

we utilize to select functions. Using objcopy, we can duplicate an

object file, and change a subset of the strong symbols into weak

symbols. The other object file is then treated similarly, but marking

the complement set of symbols as weak. At this point, both object

files can be successfully linked together into the executable.

However, when a compiler generates an object file, it works

under the assumption that the object file, also known as a single

translation unit, is indivisible [20], and therefore perform many

optimizations based on that assumption. This problem of switching

the implementation of a function has been solved in the domain

of shared libraries, with the use of LD_PRELOAD and is called inter-

position. To successfully replace all instances of one function, one

must use the -fPIC flag, thus disabling inlining of functions that
are callable from other translation units (i.e., the globally exported

symbols). When the search reaches the Symbol Bisect phase, the

target file is recompiled with this flag, and the result is checked. If

variability is removed by using -fPIC, then the search cannot go

deeper; we must be content with reporting the file containing the

variability. We are limited, therefore, to search within the space of

globally exported symbols, since those are the only ones we can

guarantee can be replaced entirely with the desired version.

Our File Bisect and Symbol Bisect approaches are not the only

ways to combine functions from two different compilations. For

example, some compilers allow turning on and off compiler opti-

mizations using #pragma statements. This approach would work

only for compilers with such a capability, and would not be able to

handle the situation of mixing compilations that have two different

compilers, such as GCC and the Intel compiler, or even two different

compiler versions. Another strategy is to split the functions into

separate source files. However, this approach is non-trivial to imple-

ment and has the potential to disable many of the optimizations that

cause variability. The final approach we considered was compiler

intermediate representation, such as LLVM IR. This approach will

work only with the compilers with which we can perform such a

pass, at the very least excluding the use of closed source compilers

such as the Intel compiler, the IBM compiler, and the PGI compiler.

For these reasons, we chose to work on combining object files after

compilation to conduct our search in File Bisect and Symbol Bisect.

We autogenerate the Test function for Symbol Bisect using the

full set of source files, the one source file to search, and the full

list of globally-exported symbol names from that source file. It

then marks certain symbols as weak from the two versions of the

variability-inducing object file (compiled by FLiT with -fPIC) and
links together these two object files with the rest of the object files

compiled with the baseline compilation.

2.4 Bisect Analysis

Stated in a general manner, our objective is to find all functions

that contribute to the observed variability. The Bisect algorithm is

used for both symbols and files, so here we use a set of elements

for which a Test function can quantify the observable variability.

Bisect is based on Delta Debugging, whose explicit goal is to find

a single minimal set that causes Test to fail [41].

Definition 1. Y is a minimal set of X , denoted by the boolean
relation MS(Y ,X), if ∀Z , [Y ⊆ X ∧ Test(Y) > 0 ∧ Z ⊊ Y ⇒
Test(Z) = 0].

Such a minimal set is not guaranteed to be unique. Furthermore,

Delta Debugging only approximates minimal sets. Instead of finding

an arbitraryminimal set, we seek to find all elements that contribute

to the variability observed when we test all elements. We start out

by defining the elements we do not care about.

Definition 2. x is a benign element of X , denoted by the bool-
ean relation B(x,X), if ∀Y ⊆ X , [Test(Y) = Test(Y ∪ {x})].

In other words, a benign element has no effect on the outcome

of Test within the set X . Using this definition of a benign element,

we define a variable elements as not benign.

Definition 3. The set of all variable elements of X , denoted
AV (X), is AV (X) ≜ X \ {x : B(x,X)}

This set AV (X) represents the smallest set that fully explains

Test(X). Specifically, by the definition of benign elements, we see

Test(AV (X)) = Test(X). Finding this set AV (X) is the goal of this
paper and of the Bisect algorithm. Without any assumptions or

restrictions on the search space, just identifying a single benign

element x requires testing against every subset of X to certify that

x is truly benign. The complexity to evaluate B(x,X) is O(2N) for
just one element, where N = |X |.

Assumption 1. Errors from different sets of variable elements are
distinct in magnitude. That is, Test(X) = Test(Y) if and only if
AV (X) = AV (Y).

This assumption states that the only way for Test values to

match is if the same underlying variable elements are present.

Given the nature of floating-point arithmetic, it is very unlikely

for compiler-induced variability to have the exact same magni-

tude. Without this assumption, we could not do any better than

brute-force search or some approximation technique.

It is noteworthy to mention that given this assumption, we can

formulate this problem to be solved by Delta Debugging, as follows.

Let U be the universal set of all elements. Define a new Boolean

function Test
′(Y) ≜ [Test(Y) = Test(U)].

Theorem 1. Let MS ′(Y ,X) ≜ ∀Z , [Y ⊆ X ∧ Test
′(Y) ∧ Z ⊊

Y ⇒ ¬Test′(Z)]. If Assumption 1 holds, then MS ′(AV (U),U) and
∀X , [X , AV (U) ⇒ ¬MS ′(X ,U)]. That is, AV (U) is the unique
minimal set ofU .

Proof. By the definition of AV , we have Test′(AV (U)) is true
because AV (AV (U)) = AV (U). From Assumption 1, if Z ⊊ AV (U),
then ¬Test′(Z), since AV (Z) , AV (U). ThereforeMS ′(AV (U),U)
is true. Now, assume AV (U) is non-unique. Then there exists an

X ⊆ U such that X , AV (U) andMS ′(X ,U) is true. This leads to a

contradiction:

Case 1: AV (X) = AV (U) ⊊ X .

But AV (X) ⊊ X and Test
′(AV (X)), therefore ¬MS ′(X ,U). E

Case 2: AV (X) ⊊ AV (U).
But Test(X) , Test(U) becauseAV (X) , AV (U) by Assumption 1.

Therefore ¬Test′(X) and subsequently, ¬MS ′(X ,U). E
□

Since Delta Debugging finds minimal sets and this minimal set

is unique, we could use Delta Debugging at this point to solve

for AV (U). The complexity of the Delta Debugging algorithm is

O(k2 logN), where k = |AV (U)| and N = |U |. We can do better.

Assumption 2. Singleton Blame Site Assumption. Each vari-
ability element contributes individually.

∀x ∈ AV (X),Test({x}) > 0

This assumption claims there is no situation where two or more

elements need to be tested together in order to generate a measur-

able variability. In general, this is not always true. However, we

found in the domain of compiler-induced variability, it is true in

practice – as demonstrated by the experimental use cases in this

paper. With Assumption 2, we can now do Bisect search to find each

element ofAV (U) individually. Each call to BisectOne is a logarith-

mic search with complexity O(logN). This function is called once

for each element to find from AV (U). Therefore, the complexity of

the Bisect algorithm is O(k logN), again with k = |AV (U)|. If k is

proportional to N (which for this problem we have not seen to be

the case), then a linear search may outperform both Bisect search

and Delta Debugging.

What if Assumption 2 is not true? We would generate false

negatives. Except, false negatives are formally checked using the

assertions found in the Bisect algorithm. The assertion on line 3 of

BisectOne verifies against the case when more than one element

is required to cause Test to be positive. It ensures that the list

of found elements are each individual contributors to variability.

The assertion on line 8 of BisectAll guarantees that found =
AV (items).

Proof. By Assumption 1, since Test(found) = Test(items), we
have AV (found) = AV (items). Furthermore, because of the asser-

tion on line 3 of BisectOne, we know that each element of found
is a variable element. Therefore, found = AV (items). □

Despite this simple proof, the result is profound. If Assumption 1

holds, and the assertions in the Bisect algorithm pass, then there are

no false negatives, meaning we have found all variability elements.

Table 1: Compilers used in the MFEM study with summary statistics. The best flags are chosen by the best average speedup

across all MFEM examples. The average speedup over all 19 MFEM examples is reported and is calculated relative to the speed

of g++ -O2.

Compiler Released # Variable Runs Best Flags Speedup

gcc-8.2.0 26 July 2018 78 of 1,288 (6.0%) -O2 -funsafe-math-optimizations 1.097

clang-6.0.1 05 July 2018 24 of 1,368 (1.8%) -O3 -funsafe-math-optimizations 1.042

icpc-18.0.3 16 May 2018 984 of 1,976 (49.8%) -O2 -fp-model fast=2 1.056

Sp
ee

du
p

fr
om

 "
g+

+
 -

O
2"

Compilation

1.0

0.8

0.6

0.4

0.2

0.0

Fastest bitwise equal:
 g++ -O3
Speedup: 1.128

Fastest variable:
 g++ -O3 -mavx2 -mfma
Speedup: 1.044
Variability: 2.99e-13

bitwise equal to baseline
shows variability

(a) Example 5

Sp
ee

du
p

fr
om

 "
g+

+
 -

O
2"

Compilation

1.0

0.8

0.6

0.4

0.2

0.0

Fastest bitwise equal:
 clang++ -O3
Speedup: 1.094

Fastest variable:
 icpc -O3 -fp-model fast=1
Speedup: 1.396
Variability: 7.78e-14

bitwise equal to baseline
shows variability

1.2

1.4

(b) Example 9

Figure 4: MFEM examples, speedup vs. compilation with compilations sorted by speedup. Both bitwise equal and variable

compilations are shown. In (a), the fastest bitwise equal compilation was the fastest overall. In (b), the opposite is true.

And this dynamic verification requires 2 + k extra calls to Test

(though really 1 + k calls because Test(items) can be memoized).

However, if the assertion fails, then either Assumption 1 or As-

sumption 2 are false, in which case the user is notified that there

may be false negative results. Also worth noting is that because

of the assertion on line 3, we guarantee that found are all variable

elements, meaning it is impossible to get false positive results.

2.5 The Bisect Biggest Algorithm

Along with the Bisect algorithm that finds all variability-inducing

files and functions, we developed an algorithm that can search for

the biggest k contributors where the user can choose the value

for k . This variant is based on Uniform Cost Search and can exit

early. Upon finding the largest contributing file, it immediately

recurses to find the k largest contributing symbols. When a file or

symbol is found to have a smaller Test value than the kth found

symbol’s Test value, it exits early. It is not able to dynamically

verify assumptions, but can significantly improve performance if

only the top few most contributing functions are desired, and there

happen to be many more than that to find.

3 EXPERIMENTAL RESULTS

We performed three evaluations of FLiT: MFEM, Laghos, and LU-

LESH. We applied FLiT to MFEM to view the speed and variability

space; then we applied FLiT Bisect on all found variant compilations.

The second evaluation is a real-world case study running FLiT Bisect

on the Laghos codebase with an unknown issue with variability.

Finally, we used an LLVM pass to modify floating-point operations

in the compilation of the LULESH miniapp to evaluate precision

and recall of the Bisect algorithm.

3.1 Performance vs. Reproducibility Case

Study

MFEM is a finite element library poised for use in high-performance

applications. FLiT was used with three mainstream compilers to

view the tradeoff between reproducibility and speed, as seen in Fig-

ure 4. In Figure 5 we examine the fastest non-variant compilations

given by each compiler with the fastest variant overall.

The MFEM library comes with 19 end to end examples of how

to use the framework, which is what we used as test cases in FLiT.

These examples include the use of MPI, which FLiT now supports.

Each example produces calculated values over a full mesh or volume.

The comparison function used the ℓ2 norm of the mesh difference,

| |baseline − actual | |2.
Using FLiT, we compiled MFEM using the g++, clang++, and

icpc compilers as listed in Table 1. For these compilers, we paired a

base optimization level, -O0 through -O3, with a single flag combi-

nation, taken from the list used in [34]. This cartesian product leads

to 244 compilations, and with 19 test cases results in a total of 4,636

Sp
ee

du
p

fr
om

 "
g+

+
 -

O
2"

1.25

1.00

0.75

0.50

0.25

0.00

clang++ fastest bitwise equal
g++ fastest bitwise equal
icpc fastest bitwise equal
any fastest variable

1.50

1.75

MFEM Example
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 5: Performance histogram of the fastest compiled executable from each category for each MFEM test. The left three

blue bars for each example represent the most performant bitwise equal execution, with the right red bar being the most

performant execution exhibiting variability (combined from the three compilers). Missing bars mean there were no results in

that category. Examples 12 and 18 had no compilations that produced variability. Examples 4, 5, 9, 10, and 15 are missing the

Intel compiler bar, because variability was introduced by the Intel link step, regardless of optimization level or switches.

Test

#
 V

ar
ia

bl
e

C
om

pi
la

ti
on

s
(o

f
24

4)
R
el

at
iv

e
E
rr

or

Figure 6: MFEM found variability. For each test, the top bar

chart shows the number of variability-inducing compila-

tions out of 244 found by FLiT. The bottom boxplot has a

vertical logscale and shows the range of relative ℓ2 errors

induced by the different compilations. Tests 12 and 18 are

omitted because they had no found variabilities.

experimental results. Looking at a single MFEM example and order-

ing the compilations from slowest to fastest, we get graphs similar

to those found in Figure 4. The points marked with a blue circle

compare equal to the baseline results from g++ -O0, and those with
a red X exhibit variability. For MFEM example 5 (Figure 4a), the

fastest compilation with bitwise equal results was 12.8% faster than

Table 2: Compiler characterization of Bisect with MFEM.

Only those runs that succeeded with File Bisect went on to

perform Symbol Bisect. A failure here means the resulting

mixed executable crashed.

g++ clang++ icpc total

average test executions 64 29 27 30

File Bisect successes 78/78 24/24 778/984 880/1,086

Symbol Bisect successes 51/78 24/24 585/778 660/880

g++ -O2. This example was not an outlier; we find similar results

in 14 of the 19 examples (Figure 5). This finding contrasts with

Figure 4b, which has the variant compilations grouped near the

top and showing a significant speedup over the fastest functionally

equivalent compilation.

While these plots give detail to individual experiments, Figure 5

shows a bigger picture. Each grouping shows the fastest non-variant

compilation and the fastest variant compilation in regards to a

single experiment. Once again, 14 out of 19 experiments show non-

variant compilations to be also the fastest. Variant compilations are

noticeably faster than non-variants in only 2 of the groupings.

The magnitude of the observed result-variability is also impor-

tant to consider. In Figure 6, we see the min, median, and max of

the relativized errors observed by the different compilations of each

MFEM example. The errors were normalized by dividing by the

ℓ2 norm of the baseline mesh values. Examples 8 and 13 showed

significant variability, and are examined further using Bisect.

3.2 Bisect

FLiT found 1,086 compilations which lead to variant results, each

of which were explored by FLiT Bisect. These searches were over a

non-trivial codebase. An overview of the success rate of Bisect is

available in Table 2.

The MFEM library contains almost 3,000 functions which are

exported symbols, as seen in Table 3. The FLiT Bisect approach de-

pends only on the number of source files and functions, as opposed

to static and dynamic analysis approaches that rely on the depth

and breadth of the call tree. While this size of 3,000 functions is

daunting for a linear search, the Bisect approach used an average of

30 executions including the verification assertion. FLiT was able to

isolate the variability to the file level 80% of the time, and of those

was able to isolate the variability to the symbol level 75% of the

time.

Two findings were significant enough to be reported back to the

MFEM team and are currently under further investigation.

Finding 1: MFEM example 8 is an iterative algorithm with a

stopping criteria of 10
−12

, yet converges to a value that has an

absolute error of 10
−6
, meaning it converged differently because

of compiler optimizations. FLiT Bisect found all nine functions

causing the variability for example 8, each performing matrix and

vector operations. The compilations were icpc -O2, icpc -O3,
g++ -O2 -mavx2 -mfma, g++ -O3 -mavx2 -mfma, and g++ -O3
-funsafe-math-optimizations. FMA is a likely culprit as well as

vectorization.

Finding 2: Example 13 had the most substantial variability by far,

having between 183% to 197% relative error. FLiT Bisect found only

one function to contribute to variability, a function that calculates

M = M + aAA⊤ with a being a scalar, and M and A being dense

square matrices. This function is implemented in a straightforward

manner using nested for loops. The compilations responsible enable

AVX2, FMA, and higher precision intermediate floating-point val-

ues. Therefore, we suspect FMA, vectorization, and higher precision

intermediates to be the reasons for the variability.

3.3 Characterization of Compilers

From this two-part experiment, we can assess the compilers predilec-

tion for speed, variability, and compatibility.

The maximum available speedup for a single example ranges

from a factor of 1.02 to 1.87 relative to the g++ -O2 compilation.

But each example has its own best compilation. Since MFEM is a

library, it is better to see which compilation lead to the best average

speedup across all examples to cover all use cases. The best average

compilations, separated by compiler, can be seen in Table 1, in

which g++ comes in first with a speedup factor of 1.097. Note, all

three of these fastest average compilations have variability induced

on at least one example.

In that same Table is the percentage of compilations which

caused variability. The most invariant compiler is clang++ with

only 1.8% of compilations deviating from the baseline. The most

variant compiler, producing almost half variable compilations (at

49.8%), is the Intel compiler, icpc. Intel’s compiler went from a

distant second in speed to last in variability.

By examining the Bisect results more closely, we discovered

some issues that drove the 20% failure rate of File Bisect. When icpc
and g++ object files were linked together, the resulting executable

would sometimes fail with a segmentation fault. While Intel claims

compatibility with the GNU compiler [18], this does not seem to

always hold.

Table 3: General statistics of code used by the MFEM exam-

ples.

source files 97

average functions per file 31

total functions 2,998

source lines of code 103,205

3.4 Penetration into Laghos

The issue found by the developers of Laghos manifested when they

compiled with IBM’s xlc++ compiler at -O3. Given the code, Bisect

was able to find an issue not related to floating-point that was

already fixed in another branch. After fixing that problem, we were

able to isolate the problem down to the function level.

The tool developers trusted the results from both g++ -O2 and
xlc++ -O2 when using their branch of the code. We used a pub-

lic branch of the code in an attempt to reproduce the results they

had. In our runs, all results were the special floating point value

NaN . Using Bisect, we narrowed this down to the two visible

symbols closest to the issue. The source code in question was

#define xsw(a,b) a^=b^=a^=b, which evokes undefined behavior
in C++. Bisect identified these two function in 45 program execu-

tions. The developers confirmed the bug, which they had fixed in

their version. While this may appear to be a case of finding a bug

yet again, the fact that our automated Bisection-based search found

this issue must be viewed as a step forward, considering that the

manual process by which the developers initially found this issue

is “hit or miss” and requires expert’s time to be spent.

After fixing this issue, we achieved results agreeing with the

developer-stated results for both the trusted compilation and the

variant xlc++ -O3 compilation. We ran many variants of Bisect

to evaluate the speed and effectiveness of BisectAll and Bisect-

Biggest, as can be seen in Table 4. By limiting either the digit sen-

sitivity of our compare function or the k value of BisectBiggest

(k = all refers to using the traditional Bisect algorithm), the number

of runs varied from 69 to 14, all of which were able to identify

the most significant variability-inducing function. In the function

pointed to was an exact comparison to 0.0 in an if statement. The

value compared against 0.0 had small variability, but the difference

in branching resulted in significant application variability. Chang-

ing this to an epsilon based comparison gave results close to the

trusted results, even under xlc++ -O3.

3.5 Injection Study

We performed controlled injections of floating-point variability at

all floating-point code locations to quantify the accuracy of our

tool.

Our injection framework is based on the LLVM compiler [23]

and introduces an additional floating-point operation in a given

floating-point instruction of the LLVM intermediate representation

(IR). More formally, given a target floating-point instruction of the

form x OP y, where x and y are floating-point operands, and OP is

a basic floating-point operation (+,-,*,/), we introduce an additional

operation x OP’ ϵ , whereOP’ is also a basic floating-point operation
and ϵ is chosen from a uniform distribution between 0 and 1. For

Table 4: Bisect statistics of the Laghos experiment. The

baseline compilation is provided, with the compilation

under test being xlc++ -O3 versus the result of FLiT

Bisect. The strict qualifier refers to the additional flag

-qstrict=vectorprecision. We restrict the comparison to

compare only the number of digits in the digits column. The

k value is how many of the most contributing functions Bi-

sect is asked to find.

baseline digits # files # funcs # runs

k : 1 2 all 1 2 all 1 2 all

g++ -O2

2 1 1 1 1 1 1 18 18 14

3 1 1 1 1 1 1 18 18 14

5 1 1 1 1 1 1 18 18 14

all 2 3 5 1 2 7 28 37 57

xlc++ -O2

2 1 1 1 1 1 1 18 18 14

3 1 1 1 1 1 1 18 18 14

5 1 1 1 1 1 1 18 18 14

all 2 3 6 1 3 7 28 37 69

xlc++ -O3
strict

2 1 1 1 1 1 1 18 18 14

3 1 1 1 1 1 1 18 18 14

5 1 1 1 1 1 1 18 18 14

all 2 3 5 1 2 5 28 39 60

example, assuming that the target instruction is

z = x ∗ y,

after the injection, the resulting operation is:

z = (x + 1e-100) ∗ y.

In this example, OP’ is the addition operation and ϵ is 1e-100.

Our variability injection framework requires two passes. The

first pass identifies potential valid injection locations; an injection

location is defined by a file, function and floating-point instruction

tuple in the program. The second pass injects in a user-specified

location, using a specific ϵ and operation OP’. We perform the

injections at an early stage during the LLVM optimization step. Our

goal is to introduce variability before optimizations take place.

For our evaluation, we used the benchmark called Livermore

Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH).

This LULESH benchmark contains 5,459 source lines of code, in

which there are 1,094 floating point operations. For each of these

operations, we did four injection runs, one for each possible OP’.
Under our evaluation criteria as seen in Table 5, we deem a sym-

bol reported by FLiT Bisect to be exact of the source function where

the injection occurred; this occurred 2,690 times. We also count

indirect finds, which is when the source function is not a visible

symbol but Bisect was able to find the visible symbol which used

the injected function, what happened 984 times. This indirection

can occur for several reasons, with the majority coming from func-

tions which were inlined or otherwise not exported as a strong

symbol. We also count wrong finds and missed finds, which are

false positives and false negatives. Both of these categories yielded

no results in our runs. The final category is when the injection was

not measurable. A non-measurable result is when the injection did

not change the output of LULESH, which account for 702 of the

Table 5: Success statistics of the LULESH compiler pertur-

bation injection experiment. Indirect finds are when the in-

jected function is not in the search space but we successfully

report the closest global function that calls it. Wrong finds

are when the reported function does not induce variability.

Missed finds are when variability occurs, but we do not re-

port the functions responsible. Not measurable indicates a

benign injection.

Category Count

exact finds 2,690

indirect finds 984

wrong finds 0

missed finds 0

not measurable 702

total 4,376

runs. A non-measurable result can occur when the injection was in

code that was not run, or if the injected variation did not affect the

final result.

3.6 MPI Support

All experiments described in this paper were run sequentially. How-

ever, in Figure 1, we specify runtime determinism as the only prereq-

uisite, meaning that FLiT can be extended to run on a deterministic

platform.

Currently, FLiT supports deterministic MPI. To test this path,

we repeated a randomized sampling of the MFEM experiment with

MPI running under 24 processes.

The first step was to give us high confidence that MFEM under

MPI is deterministic for the 19 provided examples. This evaluation

was done by performing 100 executions of each test and checking

the full matrix output for bitwise equivalence. Unfortunately, only

17 of the 19 tests were able to be easily wrapped so that the FLiT

framework could call MPI_Init and MPI_Finalize (tests 17 and 18
could not be accommodated). All 17 converted parallel tests passed

this verification, so we have high confidence that FLiT would work

well with MFEM under MPI.

Next, wewanted to determine the effects of adding parallelization

to the MFEM examples. That is to say, how do the results from the

parallel execution compare against the sequential run? We found

that in the 17 used tests, increasing the parallelism changed the

result, as measured by the ℓ2 norm of the result. We believe this is

due to increasing or decreasing the grid density when performing

domain decomposition. Regardless of the reason for the difference,

FLiT was able to identify this difference, and if the comparison

function can handle different domain sizes, then it would be able

to quantify the variability induced by changing the parallelism

configuration.

Finally, we wanted to verify if the Bisect algorithm can identify

the same files and functions underMPI as it did sequentially. For this

step, we took a single random sample from a successful sequential

Bisect run for each test (except for tests 7, 12, and 19, which had

no successful sequential Bisect runs). Each random sample was

able to isolate the same sets of files and functions, regardless of

the variability introduced by the parallelism. This approach may

not work all the time (since the variability produced by parallelism

may cause the code to branch differently). In the case of MFEM,

this case did not arise; it is highly encouraging that FLiT generates

identical results despite the parallelism.

4 RELATEDWORK

4.1 Reproducibility

The general areas of floating-point error analysis and result repro-

ducibility have been receiving a lot of attention [7, 11, 24, 31, 35].

There have also been some efforts in understanding performance

and reproducibility in the setting of GPUs [40]. The study of deter-

ministic cross-platform floating point arithmetics was reported a

decade ago in [36] by Seiler. Our initial work on FLiT was inspired

by this work.

In [5], the authors discuss the impact of nonreproducibility in

climate codes. The tooling they provide (KGEN) is home-grown, not

meant for external use [22]. Their work does not involve any capa-

bility similar to Bisect. Their focus is on large-scale Fortran support

(and currently FLiT does not handle Fortran; it is a straightforward

addition and is future work for us).

A tool called COSFID [25] was used to take climate codes and

analyze them more systematically. Their work realizes file-level

bisection search, albeit through a single recursive bash script. Their

work does not perform symbol-level bisection to isolate problems

down to individual functions, as we do.

The issue of designing bitwise reproducible applications is dis-

cussed in [3]. Their work focuses on the design of efficient reduction

operators, improving on prior work on deterministic addition. It

does not support capabilities such as compilations involving differ-

ent optimizations, and bisection search.

A recent study has discussed the relative lack of understanding

about floating-point arithmetic amongst practitioners [12]. The

issues we encountered in Laghos (the swap macro that turned out

to be undefined behavior according to C++, and the non-robust

comparison against 0.0) are both indicative of this observation.

Doug James et al. stress the need for widespread education in this

area [19].

4.2 Performance Tuning

This work implements a very rudimentary performance tuning

model of running all flag combinations within the search space and

measure each one. The novelty here is to allow navigation between

performance and reproducibility.

There is extensive work in the community with more sophisti-

cated performance tuning techniques. For example, Profile Guided

Optimization (PGO) [16], also known as Profile-Directed Feedback

(PDF), is implemented in most mainstream compilers [30, 32, 37–

39]. PGO uses an instrumented compilation to log the places in the

code that are most used and in what order. This log is then used in

a later compilation step to optimize the executable specifically for

that trace. This approach is useful if you expect your application to

follow almost the same path every time.

Other work has tuned the specific parameters within compilers

such as the TACT tool [29]. This tool tunes the internal parameters

of the GCC compiler optimizations for one particular application.

One could take a similar approach with any compiler, but each

would contain its own internal optimization parameters.

This work primarily focuses on reproducibility and identifying

sources of variability, which at first seems orthogonal to perfor-

mance. However, we recognize that one often changes architecture,

compiler, or compiler optimization flags when seeking performance,

and it is at these times that reproducibility can become an issue.

We made an initial attempt to incorporate performance and per-

formance tuning without detracting from the primary goal of re-

producibility. Involving work from the vast performance tuning

community into the FLiT work is left as future work.

5 CONCLUDING REMARKS

The case studies reported in this paper demonstrate that porting

applications even across today’s machines and compilers/flags can be

quite problematic in the field in terms of result-variability. For HPC

applications developed over decades, the problem worsens. This

observation is especially true at “the end of Moore’s law” where

heterogeneity (CPUs, accelerators, and a plethora of compilers) is

the rule and not the exception. Our work through FLiT has already

impacted state-of-the-art projects at Lawrence Livermore labs, as

we previously described. Our algorithms have yielded results con-

cerning actual projects, as well as in the context of fault injection

studies on the LULESH proxy application.

Without tools such as FLiT, a programmer may end up adopt-

ing draconian measures such as prohibiting the project-wide use

of optimizations higher than, say, -O2—something that would be

counterproductive. Tools such as FLiT will become increasingly

important in supporting new proposals [8] for mixing the use of

the fast-math and precise-math modes [28] in the same LLVM

compilation. Such mixings can help relax numerical precision in

sub-modules where speed matters (and result variability does not

matter as much). With FLiT, one can identify which modules can

be optimized under fast math, thereby supporting the use of these

new LLVM options.

In addition to discovering variability, FLiT can help exercise

compiler flag combinations and discover bugs. One such bug we

discovered during the course of using FLiT involved using -Ofast
and -ffloat-store has been reported and fixed in GCC 8.2.0 [9].

We have already begun applying FLiT to popular libraries such

as CGAL [10] that find applications in 3D printing and other critical

applications. It was encouraging for us to discover the (relative)

ease of integrating FLiT into the building and testing infrastructure

of CGAL. We also have identified specific instances of when it is

unsafe to apply higher levels of optimization, as these can drasti-

cally change the computed results (e.g., even discrete answers such

as the number of points on a mesh). This study also revealed some

limitations of Bisect that we plan to overcome. As one example, if

an application heavily uses inlining, the granularity of file bisection

search can often reduce to a single file, which is insufficient for pre-

cisely root-causing variability. Therefore, alternative methods (e.g.,
dynamic execution based) must be developed. The community also

needs to better address the issue of communicating the intended

levels of optimizations between developers and users. Our experi-

ence is that without this information, we can overly optimize an

application, only to find it throwing exceptions or not converging

properly.

Going forward, one significant limitation of FLiT, namely its

inability to handle application-level non-determinism, must be ad-

dressed. We plan to extend FLiT to work under OpenMP, MPI,

accelerator/GPU programming, and other forms of concurrency,

with support for result determinization provided in an easy-to-use

manner. Where determinization is infeasible, we may have to em-

ploy ensemble-based approaches such as proposed in [26]. Last but

not least, we will continue to enhance the robustness of FLiT. We

continue to maintain the open-source status of FLiT, and invite

contributions as well as usage of FLiT in others’ projects, providing

us feedback.

6 ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department

of Energy by LLNL under contract DE-AC52-07NA27344 (LLNL-

CONF-759867), and supported by NSF CCF 1817073, 1704715.

REFERENCES

[1] 2018. MFEM: Modular Finite Element Methods Library. mfem.org. https:

//doi.org/10.11578/dc.20171025.1248

[2] 2019. Using the GNU Compiler Collection (GCC): Compatibility. https://gcc.

gnu.org/onlinedocs/gcc/Compatibility.html

[3] Andrea Arteaga, Oliver Fuhrer, and Torsten Hoefler. 2014. Designing Bit-

Reproducible Portable High-Performance Applications. In 2014 IEEE 28th In-
ternational Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, May
19-23, 2014. 1235–1244. https://doi.org/10.1109/IPDPS.2014.127

[4] Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Dong H. Ahn,

Ignacio Laguna, Martin Schulz, Gregory L. Lee, Joachim Protze, and Matthias S.

Müller. 2016. ARCHER: Effectively Spotting Data Races in Large OpenMP Appli-

cations. In IPDPS 2016. 53–62. https://doi.org/10.1109/IPDPS.2016.68

[5] A.H. Baker, D.M. Hammerling, M.N. Levy, H. Xu, J.M. Dennis, B.E. Eaton, J.

Edwards, C. Hannay, S.A. Mickelson, R.B. Neale, D. Nychka, J. Shollenberger,

J. Tribbia, M. Vertenstein, and D. Williamson. 2015. A new ensemble-based

consistency test for the community earth system model. Geoscientific Model
Development 8 (2015), 2829–2840. doi:10.5194/gmd-8-2829-2015.

[6] Paul Baker, Zhen Ru Dai, Jens Grabowski, Øystein Haugen, Ina Schieferdecker,

and Clay Williams. 2008. Data-driven testing. In Model-Driven Testing. Springer,
87–95.

[7] Pavan Balaji and Dries Kimpe. 2013. On the reproducibility of MPI reduction

operations. In High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing (HPCC_EUC),
2013 IEEE 10th International Conference on. IEEE, 407–414.

[8] Michael Berg and Steve Canon. 2019. LLVM Numerics Improvements. https:

//llvm.org/devmtg/2019-04/talks.html#Talk_22.

[9] Ian Briggs. 2019. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90187

[10] cgal-library 2019. The Computational Geometry Algorithms Library. https:

//www.cgal.org/.

[11] Martyn J Corden and David Kreitzer. 2009. Consistency of floating-point re-
sults using the intel compiler or why doesn’t my application always give the same
answer. Technical Report. Technical report, Intel Corporation, Software So-

lutions Group. https://software.intel.com/sites/default/files/article/164389/fp-

consistency-102511.pdf.

[12] Peter A. Dinda and Conor Hetland. 2018. Do Developers Understand IEEE

Floating Point?. In 2018 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21-25, 2018. IEEE Computer

Society, 589–598. https://doi.org/10.1109/IPDPS.2018.00068

[13] Veselin A Dobrev, Tzanio V Kolev, and Robert N Rieben. 2012. High-order

curvilinear finite element methods for Lagrangian hydrodynamics. SIAM Journal
on Scientific Computing 34, 5 (2012), B606–B641.

[14] Veselin A. Dobrev, Tzanio V. Kolev, and Robert N. Rieben. 2012. High-order

curvilinear finite element methods for Lagrangian hydrodynamics. SIAM Jounal
on Scientific Computing 34, 5 (2012), B606–B641.

[15] H Carter Edwards, Christian R Trott, and Daniel Sunderland. 2014. Kokkos:

Enablingmanycore performance portability through polymorphicmemory access

patterns. Journal of Parallel and Distributed Computing 74, 12 (2014), 3202–3216.

[16] Rajiv Gupta, Eduard Mehofer, and Youtao Zhang. 2002. Profile guided compiler

optimizations. (2002).

[17] Richard D Hornung and Jeffrey A Keasler. 2014. The RAJA portability layer:
overview and status. Technical Report. Lawrence Livermore National Lab.(LLNL),

Livermore, CA (United States).

[18] Intel. 2018. GCC Compatibility and Interoperability. https:

//software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-

gcc-compatibility-and-interoperability

[19] Doug James. 2014. Standing Together for Reproducibility in Large-Scale

Computing: Report on reproducibility@XSEDE. CoRR abs/1412.5557 (2014).

arXiv:1412.5557 http://arxiv.org/abs/1412.5557 There are 54 additional co-authors

of this article.

[20] ISO Jtc. 2011. SC22/WG14. ISO/IEC 9899: 2011. Information technol-
ogy—Programming languages—C. (2011). http://www.iso.org

[21] Ian Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes.
Technical Report LLNL-TR-641973. 1–9 pages.

[22] Youngsung Kim, John Dennis, Christopher Kerr, Raghu Raj Prasanna Kumar,

Amogh Simha, Allison Baker, and Sheri Mickelson. 2016. KGEN: A python tool

for automated fortran kernel generation and verification. Procedia Computer
Science 80 (2016), 1450–1460.

[23] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for

lifelong program analysis & transformation. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and runtime
optimization. IEEE Computer Society, 75.

[24] Miriam Leeser and Michela Taufer. 2016. Panel on Reproducibility at SC’16.

http://sc16.supercomputing.org/presentation/?id=pan109&sess=sess177.

[25] R Li, L Liu, G Yang, C Zhang, and B Wang. 2016. Bitwise identical compiling

setup: prospective for reproducibility and reliability of Earth system modeling.

Geoscientific Model Development 9, 2 (2016), 731–748.
[26] Daniel J. Milroy, Allison H. Baker, Dorit M. Hammerling, Youngsung Kim, Eliza-

beth R. Jessup, and Thomas Hauser. 2018. Making root cause analysis feasible for

large code bases: a solution approach for a climate model. CoRR abs/1810.13432

(2018). http://arxiv.org/abs/1810.13432

[27] Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging.

In Proceedings of the 28th international conference on Software engineering. ACM,

142–151.

[28] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jean-

nerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé,

and Serge Torres. 2010. Handbook of Floating-Point Arithmetic. Birkhäuser.

https://doi.org/10.1007/978-0-8176-4705-6

[29] Dmitry Plotnikov, Dmitry Melnik, Mamikon Vardanyan, Ruben Buchatskiy, Ro-

man Zhuykov, and Je-Hyung Lee. 2013. Automatic tuning of compiler opti-

mizations and analysis of their impact. Procedia Computer Science 18 (2013),

1312–1321.

[30] Dino Quintero, Sebastien Chabrolles, Chi Hui Chen, Murali Dhandapani, Talor

Holloway, Chandrakant Jadhav, Sae Kee Kim, Sijo Kurian, Bharath Raj, Ronan

Resende, et al. 2013. IBM Power Systems Performance Guide: Implementing and
Optimizing. IBM Redbooks.

[31] Carlos R and Michael Steyer. 2018. Intel® MPI Library Conditional Reproducibil-

ity. (Jan. 2018). https://software.intel.com/en-us/articles/tuning-the-intel-mpi-

library-basic-techniques.

[32] Vinodha Ramasamy, Paul Yuan, Dehao Chen, and Robert Hundt. 2008. Feedback-

Directed Optimizations in GCC with Estimated Edge Profiles from Hardware

Event Sampling. In Proceedings of GCC Summit 2008. 87–102. http://www.capsl.

udel.edu/conferences/open64/2008/Papers/113.pdf

[33] Kento Sato, Dong H. Ahn, Ignacio Laguna, Gregory L. Lee, and Martin Schulz.

2015. Clock delta compression for scalable order-replay of non-deterministic

parallel applications. In Supercomputing (SC). 62:1–62:12. https://doi.org/10.1145/
2807591.2807642

[34] Goef Sawaya, Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, and Dong H

Ahn. 2017. FLiT: Cross-platform floating-point result-consistency tester and

workload. In Workload Characterization (IISWC), 2017 IEEE International Sympo-
sium on. IEEE, 229–238.

[35] SC15-Repro-BOF 2016. SC15 BoF on Reproducibility of High Performance Codes

and Simulations – Tools, Techniques, Debugging. https://gcl.cis.udel.edu/

sc15bof.php Organized by Miriam Leeser, Dong H. Ahn and Michela Taufer.

[36] Christian Seiler. 2008. http://christian-seiler.de/projekte/fpmath/.

[37] Clang Developer Team. 2019. Clang Compiler User’s Manual. https://clang.llvm.

org/docs/UsersManual.html.

[38] Visual CPP Team. 2008. Visual C++ Team Blog: POGO. https://blogs.msdn.

microsoft.com/vcblog/2008/11/12/pogo/.

[39] Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and Ernesto Su.

2002. Intel® OpenMP C++/Fortran Compiler for Hyper-Threading Technology:

Implementation and Performance. Intel Technology Journal 6, 1 (2002).
[40] Nathan Whitehead and Alex Fit-Florea. 2012. Precision & Performance: Floating

Point and IEEE 754 Compliance for NVIDIA GPUs. Presented at GTC 2012.

[41] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-

inducing input. IEEE Transactions on Software Engineering 28, 2 (2002), 183–200.

mfem.org
https://doi.org/10.11578/dc.20171025.1248
https://doi.org/10.11578/dc.20171025.1248
https://gcc.gnu.org/onlinedocs/gcc/Compatibility.html
https://gcc.gnu.org/onlinedocs/gcc/Compatibility.html
https://doi.org/10.1109/IPDPS.2014.127
https://doi.org/10.1109/IPDPS.2016.68
https://llvm.org/devmtg/2019-04/talks.html#Talk_22
https://llvm.org/devmtg/2019-04/talks.html#Talk_22
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90187
https://www.cgal.org/
https://www.cgal.org/
https://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
https://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
https://doi.org/10.1109/IPDPS.2018.00068
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-gcc-compatibility-and-interoperability
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-gcc-compatibility-and-interoperability
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-gcc-compatibility-and-interoperability
http://arxiv.org/abs/1412.5557
http://arxiv.org/abs/1412.5557
http://www.iso.org
http://sc16.supercomputing.org/presentation/?id=pan109&sess=sess177
http://arxiv.org/abs/1810.13432
https://doi.org/10.1007/978-0-8176-4705-6
https://software.intel.com/en-us/articles/tuning-the-intel-mpi-library-basic-techniques
https://software.intel.com/en-us/articles/tuning-the-intel-mpi-library-basic-techniques
http://www.capsl.udel.edu/conferences/open64/2008/Papers/113.pdf
http://www.capsl.udel.edu/conferences/open64/2008/Papers/113.pdf
https://doi.org/10.1145/2807591.2807642
https://doi.org/10.1145/2807591.2807642
https://gcl.cis.udel.edu/sc15bof.php
https://gcl.cis.udel.edu/sc15bof.php
http://christian-seiler.de/projekte/fpmath/
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html
https://blogs.msdn.microsoft.com/vcblog/2008/11/12/pogo/
https://blogs.msdn.microsoft.com/vcblog/2008/11/12/pogo/

	Abstract
	1 Introduction
	2 Workflow for Multi-Level Analysis
	2.1 Bisect Problem
	2.2 Bisect Algorithm
	2.3 Implementation of Bisect
	2.4 Bisect Analysis
	2.5 The Bisect Biggest Algorithm

	3 Experimental Results
	3.1 Performance vs. Reproducibility Case Study
	3.2 Bisect
	3.3 Characterization of Compilers
	3.4 Penetration into Laghos
	3.5 Injection Study
	3.6 MPI Support

	4 Related Work
	4.1 Reproducibility
	4.2 Performance Tuning

	5 Concluding Remarks
	6 Acknowledgments
	References

