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Abstract. When it comes to data race detection, complete information about
synchronization, concurrency and memory accesses is needed. This information
might be gathered at various levels of abstraction. For best results regarding ac-
curacy this information should be collected at the abstraction level of the parallel
programming paradigm. With the latest preview of the OpenMP specification, a
tools interface (OMPT) was added to OpenMP. In this paper we discuss whether
the synchronization information provided by OMPT is sufficient to apply accu-
rate data race analysis for OpenMP applications. We also present some imple-
mentation details for our data race detection tool called Archer which derives the
synchronization information from OMPT.

1 Introduction

OpenMP is the de facto standard for parallel programming on shared memory machines.
It is also becoming increasingly popular on extreme-scale systems as it offers a portable
way to harness the growing degree of parallelism available on each node. However,
porting large HPC applications to OpenMP often introduces subtle errors. Of these,
data races are particularly egregious, as well as challenging to identify. Data races may
remain undetected during testing, but nevertheless manifest during production runs by
often resulting in confusing (and/or non-reproducible) executions that the programmer
wastes considerable amounts of time debugging. In extreme situations, data races may
simply end up silently corrupting user data. For all these reasons, data race detection
remains one of the central concerns in parallel programming, in particular for shared
memory programming models.

In previous papers [1,5], we presented the tool ARCHER, based on ThreadSani-
tizer [6,7], which is able to find data races in OpenMP applications, that are run with
the LLVM/OpenMP runtime on x86 machines. The fact which makes this tool unique
from other approaches of available data race detection tools for OpenMP applications
is that we cover almost all host-side OpenMP directives as provided in the OpenMP
4.5 specification. To make the tool portable across OpenMP runtime implementations
and hardware platforms, we want to base the annotation of OpenMP synchronization
on OMPT events.



In this paper we investigate whether the information provided by OMPT is sufficient
to derive all OpenMP synchronization semantics. We will describe OMPT based anno-
tations of OpenMP synchronization. The annotations are provided as happened-before
arcs, which can be understood by ThreadSanitizer, but also by the Valgrind based data
race detection tool Helgrind. This approach is portable across OpenMP runtime im-
plementations, as long as these implement and provide the necessary OMPT callback
function invocations.

In Section 2 we look at OpenMP directives with synchronization semantics from
a happened-before point of view. In Section 3 we describe the OMPT events, that we
use to annotate the synchronization and how we specify the happened-before arcs. In
Section 4 we discuss challenges we encountered on the way, implementing the tool and
discuss information missing in the OpenMP tools interface.

2 Synchronization in OpenMP

According to the OpenMP specification [2]: “... if at least one thread reads from a mem-
ory unit and at least one thread writes without synchronization to that same memory
unit [...], then a data race occurs. If a data race occurs then the result of the program is
unspecified.”

To enable a data race detection tool to identify a data race, complete understanding
of synchronization is needed. In this section we provide a summary of the synchroniza-
tion concepts in OpenMP, as they need to be understood by an analysis tool, to identify
synchronized memory accesses. In this paper we focus on data races that happen be-
tween threads on a host device. Thus, we do not consider constructs for offloading to
an accelerator device.

2.1 The parallel Construct

When a thread encounters a parallel construct, the thread creates a team of threads to
execute the parallel region. Each thread of the team executes the structured block of the
parallel region within an implicit task.

Encountering the parallel construct happens before the execution of all implicit
tasks of the team.

There is an implicit barrier at the end of the parallel region, which happens before
the master thread continues execution.

2.2 The barrier Construct

The barrier in OpenMP applies for the innermost parallel team. On encountering a
barrier construct, a thread cannot continue executing the implicit task until all threads
in the team reached the barrier.

For all threads in the team, encountering the barrier construct happens before they
continue execution of the implicit task.



2.3 The reduction Clause

The reduction clause provides a mechanism to reduce results at the end of a work-
sharing region into a single value. The clause takes a reduction identifier to specify the
reduction operation, the synchronization of the reduction is provided by the OpenMP
implementation.

If no nowait clause is used on the same construct, the reduction happens before
the end of the region. Otherwise the reduction happens before the next barrier.

2.4 The critical Construct

The critical construct provides mutual exclusion for the critical region. The critical
construct can have a name, that provides mutual exclusion only for critical regions with
the same name. The critical region is equivalent to getting a lock at the begin of the
region and releasing the lock at the end, with different locks for different names and an
extra lock for all unnamed critical regions. Thus, the synchronization semantics are the
same as for Locking routines.

2.5 Locking Routines

OpenMP provides routines to init, destroy, acquire and release locks and nested locks.
Locks provide mutual exclusion for code between acquiring and releasing a lock.

As a strict measure, a lock-set algorithm can be used to express the synchronization
of critical region and locking routines. But lock-set is in general too strict and can lead
to false positives The reason is that an application might implement happens before
semantics in the locked sections. The alternative is to express locks with a happens
before relation:
Releasing a lock happens before acquiring the same lock.

This might over-estimate the synchronization semantics of the application and lead
to omission of actual data races. This is a point, where large numbers of repetition and
concurrency helps to stochastically execute the right interleaving of locked regions, so
that the race can still be observed.

2.6 The ordered Construct

The ordered construct provides mutual exclusion for the ordered region. Additionally,
the ordered construct also provides an ordering for the execution.

Thus, when observing the execution of an OpenMP program, the end of an ordered
region happens before the begin of the next iteration of the same ordered region.

2.7 The task Construct

When a thread encounters a task construct, the thread generates a task from the asso-
ciated structured block. The thread might execute the thread immediately, or defer the
task for later execution.

Encountering the task construct happens before the execution of the task. The end
of a task region happens before the next barrier of the team finished synchronization.
Without further clauses or constructs, there is no more synchronization at the end of a
task.



2.8 The taskwait Construct

The taskwait construct lets the encountering task wait for completion of all direct child
tasks that this task created before encountering the taskwait.

Finishing all child tasks happens before the taskwait regions ends and the task can
continue execution.

2.9 The taskgroup Construct

The taskgroup construct lets the encountering task wait at the end of the task group
region for completion of all child tasks this task created in the taskgroup region and
their descendants

Finishing all child and descendant tasks happens before the taskgroup regions ends
and the task can continue execution.

2.10 The depend Clause

The depend clause provides synchronization for task as the provided in, out, and inout
dependencies define constraints for the scheduling of tasks. A depend clause can have a
list of storage locations, which describe in or out dependencies. The end of a task with
an in dependency on a storage location x happens before the start of any task with an
out or inout dependency on the same storage location x. The end of a task with an out
or inout dependency on a storage location x happens before the start of any task with
an in, out, or inout dependency on the same storage location x.

To summarize, only in dependencies with the same storage location x do not syn-
chronize. All other dependencies with the same storage location x synchronize.

2.11 Untied Tasks

Deferring a task happens before scheduling the same task again. This is especially
important for untied tasks, that can migrate from one thread to another thread after
being deferred during execution.

2.12 The flush Construct

The flush construct makes a thread’s temporal view of memory consistent with memory
and enforces a specific ordering of memory operations. The flush construct takes an
optional list of variables, the flush-set. With the right combination of loads, stores and
flushes, an application programmer can achieve fine-grain synchronization. Modeling
the semantics of flushes with plain happens-before relation introduces synchronization
which possibly hides any data race. A better approach for handling flushes is discussed
by Lidbury and Donaldson [4]. They extend ThreadSanitizer to understand and handle
C++11 flush semantics.

3 OMPT Events for Synchronization

In this section we explain the synchronization events provided by the OpenMP tools
interface as it is integrated into the preview of the OpenMP specification 5.0 [3]. Since



we implemented our prototype along with the LLVM/OpenMP runtime implementa-
tion, we used the version of OMPT, that is implemented there. The latest specification
of OMPT describes events as points of interest in the execution of a thread. Tool call-
back functions are implemented in a tool and invoked by the runtime when a matching
event happens. Multiple events might trigger the same callback; the tool can differ the
events by some kind and endpoint arguments provided with the callback invocation.
On tool initialization the OpenMP runtime implementation provides information to the
tool, whether requested callback invocations are provided or not. For some groups of
events invocation is mandatory, for some it is optional.

3.1 Team related OMPT Events

The following events mark the synchronization points for a team from the creation of
the team to the end:

– parallel-begin
– implicit-task-begin
– barrier-begin

– barrier-end
– implicit-task-end
– parallel-end

On a parallel-begin event, we generate a new team information object and start a
happened-before arc for the team.

On an implicit-task-begin event, we generate a new task information object and end
the happened-before arc for the team. This synchronizes the team creation.

On a barrier-begin event, we start a happened-before arc on an address from the
team’s information object. This event is specified to happen before the actual synchro-
nization of the barrier.
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Fig. 1: a) Happens-before arcs in a parallel region with explicit barrier and implied barrier at the
end. b) If a thread returns late from the barrier code (red barrier-end (4)), others might be already
in the next barrier. In this case, we would add wrong happens-before arcs, if all barriers use the
same token for the happened-before annotation



On the barrier-end event, we end the happened-before arc on the same address from
the team’s information object. Since there is no synchronization between the barrier
end event and the next barrier begin event, it is possible as depicted in Figure 1b, that a
thread of the team reaches the next barrier before another thread finished the previous
barrier. Therefore, consecutive barriers should use distinct synchronization tokens. The
OpenMP specification states that all threads in a team need to participate on each barrier,
so we use two addresses for barriers in the team information object and each implicit
task toggles between the two addresses.

The parallel region ends with an implicit-task-end event and a parallel-end event
where we free the task and team information objects. The synchronization at the end
of the region happens solely in the implied barrier at the end of the region. This is the
second barrier in Figure 1a.

As a missing piece in OMPT we will discuss the OpenMP reduction clause in
Section 4.

3.2 Task related OMPT Events

The following events mark the synchronization points for a task from the creation of a
task to the end:

– task-create
– task-dependences
– task-schedule

– taskwait-end
– taskgroup-begin
– taskgroup-end

On a task-create event, we generate a new task information object and start a
happened-before arc for the generated task. This synchronizes the task creation with
the execution of the task. If this event is invoked before all data are copied to the task
data structures, there might be some false data race alerts. Especially the copying of
first-private data, which is then accessed by the task, might be a problem. See Figure 2
for an illustration of the task-related events and happened-before synchronization.

On a task-dependences event we save all dependences information into the task
information object for later use.

On the first task-schedule event for a new task, we end the happened-before arc
from the generation of the task. Further, we iterate over all task dependences and end
happened-before arcs for all dependences. If the dependency is an in dependency, we
only end happened-before arcs from out or inout dependencies on this storage loca-
tion. If the dependency is an out or inout dependency, we end happened-before arcs
from all dependencies on this storage location. See Figure 3 for an illustration of the
dependencies-related events and happened-before synchronization. This also highlights
the necessity to store the dependency information from task creation until task comple-
tion.

If the prior_task_status signals completion of the previous task, we start
happened-before arcs for the completed task:

– towards a potential taskwait of the parent task
– if the task is in a taskgroup towards the end of the taskgroup
– if the task has dependencies, an arc per dependency.
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Fig. 2: Execution of a task happens after the task was generated from the parent; in case the parent
task does a taskwait, the taskwait finishes after the generated task finished; end of taskgroup is
similar
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Fig. 3: This is the dependency graph for a set of tasks which were created with out, in, in, and out
dependency on x; the end of a task with out dependency happens before all task-begin of tasks
with a dependency on the same address. Tasks with the same in dependency run concurrently.

On a taskwait-end event, we end the happened-before arc from all child tasks. We
use a common token for all child tasks, so this is a single operation.

On a taskgroup-begin event, we push a taskgroup information object on the
taskgroup stack of the encountering task. The stack is necessary because multiple
taskgroup regions might be closely nested within a task. All child tasks inherit the
taskgroup stack on task generation, so they know about their enclosing taskgroup.

On a taskgroup-end event, we end the happened-before arcs of all child tasks, tar-
geting to the taskgroup end. Then we pop the taskgroup from the stack of taskgroups.

3.3 Locking related OMPT events

The following events mark the begin and end of mutual exclusion:

– acquired-lock
– acquired-nest-lock-first
– acquired-critical
– acquired-atomic
– acquired-ordered

– released-lock
– released-nest-lock-last
– released-critical
– released-atomic
– released-ordered



The latest OMPT specification consolidates all above events into a single callback
for acquired and released with a kind argument for the kind of synchronization. For the
happened-before synchronization, we only use the wait-id argument, so the handling
of events is symmetric for all kind of mutex events.

On an acquired event, we end a happened-before arc, that starts on a previous
released event.

To represent the synchronization semantics of locks in a data race analysis, it is im-
portant to start and end the happened-before arc inside of the locked region. Otherwise,
another thread might already enter a locked region, before the released information is
available. To reduce the potential overhead of an OMPT tool, the released event is in-
voked after the lock was released and there is no releasing event in OMPT. We discuss
in Section 4.1 how we worked around this issue.

3.4 OMPT flush event

The flush event doesn’t fit into the semantics of the previously discussed event groups.
As touched in Section 2.12, happened-before semantics are too strict. But omitting the
handling of flush, we experience false reports on data races in applications that use flush
for synchronization. Implementing the right semantics for flush in our tool is subject of
future work. But for now, we found that the information provided by the flush event is
not sufficient for data race analysis as we will discuss in Section 4.5.

3.5 Team and Task Information Structures

We create an information object for each team and each task, which we store in the run-
time scope of this team or task using the parallel_data and task_data fields
provided by OMPT. In this section we detail on the necessary members of these objects.
Both kinds of objects contain tokens, that we use to annotate different synchronization
points.

A team object contains

– two tokens for barriers, the tasks of the team use them alternating; we also use
one of the tokens for the fork of the team.

A task object contains

– a token for the task, that is used for the annotation, task-create before task-
execution and task-deferring before rescheduling,

– a token for taskwait, which is used to annotate synchronization between the end
of all child tasks and the taskwait,

– a barrier index, that toggles between odd and even barrier count,
– a reference count for direct child tasks, the object is only freed when the task

and all child tasks finished execution,
– a reference to the parent task object,
– a reference to the implicit task object in the stack next to this task,
– a reference to the currently active taskgroup object,
– a copy of the list of dependencies and a dependency count,



– address and size of task private memory.

A taskgroup object contains

– a token for the taskgroup
– a reference to the enclosing taskgroup

4 Implementation Challenges and OMPT Shortcomings

In this section we discuss challenges, potential pitfalls and open issues which we en-
countered implementing the synchronization annotations in an OMPT-based tool.

4.1 Annotation of Locking

For TSan a happened-before annotation consists of writing memory at the start of the
happens-before arc and reading the memory at the end of the arc. If the memory access
is not synchronized, expressing the happens-before arc fails, since the read possibly
happens before the write. For the annotation of locking this means, that the annotation
needs to take place, while the thread owns a lock, that prevents the other thread from
entering the locked region.

OMPT only provides the events acquiring (i.e. asking for the lock), acquired (when
the lock is acquired) and released (after the lock was released) of a lock. OMPT does not
provide a releasing event to safe the potential overhead in the critical path of execution.
As depicted in Figure 4a we would need to describe a happened before arc from a
releasing event to the next acquired event. And an arc from a released event to the
acquired event goes potentially backwards in time.

As work-around for this issue we set an own mutex in each acquired event, before
we end the happens-before arc and release the mutex in the matching released event
after we started the happens-before arc. This approach is depicted in Figure 4b. This
way we can guarantee that we annotate the end of a happened before arc only after
we annotated the begin of the happened before arc. Since the OpenMP runtime already
acquired a lock, we don’t expect lock contention. It just might be the case, that the
previous locked region still holds the mutex to finish the released event.

4.2 Annotation of Task Dependencies

As discussed in 3.2, the synchronization behavior is different for in and out dependen-
cies. The end of a task with an in dependency happened before a task begins with the
same out dependency. The end of a task with an out dependency happened before a task
begins with the same in or out dependency. That means, at the task begin with an in
dependency, we need to differ the arcs that come from in or out dependencies.

So, we need two different tokens for starting the happens-before arc of in depen-
dencies and out dependencies. This token need to be common knowledge of all task
using the dependency and for TSan the requirement for a token is that it needs to be a
valid memory address of the process. For this reason, it is natural to use the address of
the dependency as the token to annotate the happened before arc. Since we need two
tokens, we use the address provided as dependency and the address next to this address,
assuming that applications will not use byte-sized variables as dependencies.
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Fig. 4: a) OMPT doesn’t provide a releasing event. Using the released event to start the
happened-before arc potentially results in a happened-before arc backwards in time. b) We use
an additional lock in the tool, to extend the exclusive region into the released callback. This way
we can express the proper happened-before semantics.

4.3 Memory Behavior for Tasks

Another source of confusion for data race detection is the handling of OpenMP data en-
vironment for explicit tasks. For firstprivate variables, the OpenMP implementa-
tion needs to capture the value at task creation and provide the value at task execution.
From what we have seen for various OpenMP implementations is, that the compiler gen-
erates code to copy the value at task creation into a task-specific data structure before
adding the task to the queue. For the begin of execution of the task, the compiler gen-
erates code to copy the values to the stack of the task. These accesses are synchronized
well. The problem arises from another implementation detail of the OpenMP runtime:
The runtime takes the memory for the task structure from an internal memory pool. The
access to the memory pool is internally locked. The tool can see memcpy to the task
specific memory block at task creation and memcpy from the specific memory block
at task execution. The tool can understand the synchronization between task creation
and task execution. But there is no synchronization between end of execution—the free
of the task specific memory block—and creation of another task—where the memory
from the pool is reused. The tool needs to understand the new and free semantics for
this memory provided by the runtime, but visible in the compile unit of the application.

Introducing a happened-before arc for this synchronization would be against the
semantics of the OpenMP synchronization. Our proposal to solve this issue is a new
OMPT inquiry function, where a tool can query for task specific memory blocks. The
tool can then simulate the new and free semantics for this memory range at begin and
end of task execution.

4.4 Annotation of Reductions

The current specification of OMPT provides no events for a reduction. The OpenMP
specification does not require a specific point in the application execution, where the
reduction needs to take place. Also an OpenMP implementation has a lot of freedom
to implement the reduction algorithm, which results in various scenarios of memory



access patterns. Threads might accumulate the own value to another thread’s reduction
value, threads might fetch other thread’s reduction value and accumulate at the own
reduction value, a master thread might collect all reduction values. The reduction might
also be implemented solely with atomic operations.

We propose the following events for the implementation of reductions:

– release-reduction: thread will not touch reduction variable after this event
– reduction-begin: begin of reduction operations
– reduction-end: end of reduction operations

We think, that release-reduction and reduction-end can share the same callback
function. The callback function needs to provide information about the local copy of
the reduction variable.

The LLVM/OpenMP runtime implements most reductions inside the synchroniza-
tion of the barrier. So as a temporary workaround, we ignore memory accesses inside
of OpenMP barriers. If a task is scheduled in the barrier, we turn of ignoring memory
accesses and turn it back on, when the barrier gets active again. This works in most
cases for this specific runtime, but we don’t expect this to be a portable workaround.

4.5 Information on Flush-set

The current specification of the flush event as of TR4 only provides information on the
source code of the flush (codeptr ra) and the current thread, but no information on the
provided list argument, which describes the flush-set of the flush operation. To derive
the right flush semantics for data race detection, this information would be necessary.

We propose to extend the definition of ompt_callback_flush_t by an array
of pointers and a size argument:

1 typedef void (*ompt_callback_flush_t) (
2 ompt_data_t * thread_data,
3 const void * list,
4 int list_length,
5 const void * codeptr_ra
6 );

5 Conclusions

In this paper we discussed whether OMPT provides sufficient information to derive all
synchronization semantics needed for data race detection. We based the analysis on a
happened-before based model. But we think, the observations would also apply for a
different analysis model, based on lock-set or plain analysis of OpenMP flush seman-
tics. We implemented a data race detection tool based on OMPT. With OMPT based
annotations, the tool passes most of the tests in our test suite. We pointed out three miss-
ing pieces of information in the OMPT interface, that is information about reduction,
information about runtime managed memory for tasks, and information on flush-set for
flushes. We provide guidance on how to apply on-the-fly analysis for OpenMP mutual
exclusion with the missing releasing event.



Further, we discussed the necessary OMPT events, to derive the synchronization in-
formation for data race analysis. To enable data race analysis based on these events, an
OpenMP implementation needs to implement and provide callback invocation for these
events. The issue here is that some of these callback invocations are optional according
to current specification. This affects especially the events for taskwait, taskgroup, bar-
rier and locks. If a data race detection tool cannot rely on these events, the advantage
of portability across OpenMP implementations is gone. Therefore we suggest to make
these callback invocations mandatory in the OpenMP specification.
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