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Abstract—OpenMP plays a growing role as a portable pro-
gramming model to harness on-node parallelism; yet, existing
data race checkers for OpenMP have high overheads and
generate many false positives. In this paper, we propose the
first OpenMP data race checker, ARCHER, that achieves high
accuracy, low overheads on large applications, and portability.
ARCHER incorporates scalable happens-before tracking, ex-
ploits structured parallelism via combined static and dynamic
analysis, and modularly interfaces with OpenMP runtimes.
ARCHER significantly outperforms TSan and Intel�Inspector
XE, while providing the same or better precision. It has helped
detect critical data races in the Hypre library that is central
to many projects at Lawrence Livermore National Laboratory
and elsewhere.

Keywords-data race detection; OpenMP; high performance
computing; static analysis; dynamic analysis;

I. INTRODUCTION

High performance computing (HPC) is undergoing an
explosion in raw computing capabilities as evidenced by
recent announcements of next-generation computing sys-
tem projects [1]–[3]. To meet the stipulated performance
and power budgets, many key software components in
these projects are being transitioned to adopt on-node
parallelism to a greater degree. The predominant pro-
gramming model of choice in this transition is OpenMP—
due in large part to its portability and ease of use. We
are working with computational scientists at Lawrence
Livermore National Laboratory (LLNL), one of the world’s
largest computing facilities, where many of our mission-
critical multiphysics applications [4] are being ported to
exploit OpenMP.
We find, however, that efficient and scalable develop-

ment tools for OpenMP are still quite scarce, making
development efforts hard. In particular, none of the pre-
existing OpenMP data race checkers is capable of han-
dling the code sizes involved, or provides effective debug-
ging support for concurrency bugs. Meanwhile, libraries
such as Hypre [5], which underlie many critical applica-
tions, have run into data races during this transition. In
one LLNL application, because of this lack of debugging
tools, developers who faced these races even took the
draconian approach of reverting back to sequential code.

In this paper we describe ARCHER, our new OpenMP
data race detector, its unique capabilities in terms of
scalability and precision, its use of a proposed standard,
and our philosophy of building on well-engineered open-
source software. While the core concept of a data race
has been known for decades (uncoordinated, i.e., not
separated by a happens-before edge, accesses on a mem-
ory location by two threads, with one access being a
write), transitioning this idea into HPC practice required
adherence to four key tenets.
(1) Scalable Happens-Before Tracking Methods: Check-
ing for races in production OpenMP programs requires
the ability to track a huge number of memory references
and their happens-before ordering. A significant amount
of ARCHER’s scalability stems from its exploitation of
a pre-existing tool—namely ThreadSanitizer (TSan) [6].
TSan’s unique architecture enables it to implement the
idea of vector-clock-based race checking far more effi-
ciently than comparable tools do. Embracing TSan and
its LLVM-based tooling approach enables us to write
custom LLVM passes, and in general take advantage of
the growing popularity of LLVM in HPC [7]. Previous
OpenMP data race checking tools were never released
for public evaluation, were based on binary instrumen-
tation through PIN [8], or employed symbolic meth-
ods [9]. These approaches are neither scalable nor widely
portable. ARCHER has been publicly released under the
BSD License [10]. (Note: TSan was originally designed for
PThread and Go programs, and cannot be directly applied
to OpenMP programs as will soon be described.)
(2) Static/Dynamic Analysis of Structured Parallelism:
In ARCHER, we capitalize on OpenMP’s structured paral-
lelism to support two key features never before exploited
in an OpenMP race checker. First, we exploit OpenMP’s
structured parallelism to easily write LLVM passes that
identify guaranteed sequential regions within OpenMP.
Such analysis would be difficult to conduct in the context
of unstructured parallelism (e.g., PThreads). Second, we
identify and suppress parallel loops from race checking.
ARCHER achieves this by black-listing accesses within
parallelizable loops with the help of a static analysis.
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(3) Modular Interfacing with OpenMP Runtimes: While
structured parallelism has been exploited in the context
of Java-like languages (e.g., Habanero Java [11]), such ex-
ploitation in the context of OpenMP and ARCHER required
a combination of innovations. Unlike in languages such
as Habanero Java where the language and the runtime
are designed together, in OpenMP vendors provide their
own custom runtimes. Tools, such as TSan, must be suit-
ably modified to ignore OpenMP internal actions, which
may otherwise be falsely assumed to be data races [7].
ARCHER’s approach is architected based on the OMPT
standard [12] so that our solutions may modularly be
incorporated with multiple OpenMP runtimes.
(4) Collaboration with Active Projects: ARCHER has
already made significant impact within LLNL. As one
example, HYDRA [13] is a large multiphysics application
developed at LLNL, which is used for simulations at the
National Ignition Facility (NIF) [14] and other high en-
ergy density physics facilities. It comprises many physics
packages (e.g., radiation transfer, atomic physics, and
hydrodynamics), and although all of them use MPI, a
subset of them use thread-level parallelism (OpenMP and
PThreads) in addition to MPI. It has over one million
lines of code and a development lifetime that exceeds 20
years. In the summer of 2013, developers began porting
HYDRA to Sequoia [15], the over 1.5 million core IBM
Blue Gene/Q-based system that had just been brought
online at that time. Although the efforts included incor-
porating more threading for performance, the developers
got significantly impeded when they could not resolve a
non-deterministic crash on an OpenMP-threaded version
of Hypre [5] (used by one of HYDRA’s scientific packages).
The developers found it very difficult to debug this
error that occurred intermittently after varying numbers
of time steps, only at large scales (at or above 8192
MPI processes), and only under compiler optimizations.
After spending considerable amounts of time, the team
suspected the presence of a data race within Hypre, but
the difficulties in debugging and time pressure forced
them to work around the issue by selectively disabling
OpenMP in Hypre. When ARCHER was brought onto the
scene, it located “benign races” involving two threads
racing to write the same value to the same location—
a practice known to be dangerous in the presence of
compiler optimizations [16]. Removing these benign races
fixed the bug. This episode—detailed in Section III-C—
clearly shows that effective data race checkers specifically
tailored to high-end computing environments are invalu-
able during critical projects.

II. APPROACH

Figure 1 illustrates how ARCHER implements our
tenets by combining well-layered modular static and
dynamic analysis stages. In more detail, our static analysis

passes [17]–[19] help classify the given OpenMP code
regions into two categories: guaranteed race-free and
potentially racy. Our dynamic analysis then applies state-
of-the-art data race detection algorithms [20], [21] to
check only the potentially racy OpenMP regions of code.
The static/dynamic analysis combination is central to
the scalability (while maintaining analysis precision) of
ARCHER, as evidenced by its ability to handle real-world
examples that existing tools cannot handle with the same
levels of precision and scalability (see Section III-B).
As described earlier, we implemented ARCHER using the

LLVM/Clang tool infrastructure [22], [23] and the TSan
dynamic race checker [6]. On the static analysis side,
ARCHER uses Polly [19] to perform data dependency and
loop-carried data dependency analysis (together called
data dependency analysis from now on). This results in a
Parallel Blacklist. ARCHER also extends some of the static
analysis passes already present in LLVM. Specifically, our
extension builds a call graph and traverses it to identify
memory accesses that do not come from within an
OpenMP construct (i.e., sequential code regions). This
results in a Sequential Blacklist. These blacklists are com-
bined and used to limit the instrumentation in TSan.
On the dynamic analysis side, ARCHER uses our cus-

tomized version of TSan to detect data races at run-
time. To prevent TSan from being confused by OpenMP
runtime internal actions (and falsely report them as
OpenMP-level races), ARCHER employs TSan’s Annotation
API to highlight these synchronization points within LLVM
OpenMP Runtime (the runtime presently associated with
ARCHER in our studies). As we have already pointed out,
our efforts are being migrated to adhere to the OMPT
standard.1

A. Static Analysis Phase

We now detail some of the finer details of our static
analysis, including feeding the blacklist information to
the TSan runtime. TSan carries out its dynamic data
race detection by first instrumenting all the load and
store actions of a program at compile time, and using
this instrumentation to help track happens-before. TSan
also provides a feature that allows users to blacklist
functions [24] (by their name) that should not be in-
strumented and that are thus to be ignored at runtime.
Unfortunately, this granularity of instrumentation is in-
sufficiently refined to handle our sequential and parallel
blacklists that express the intent to blacklist individual
accesses (that are, in almost all cases, not demarcated by
function boundaries). Thus, in order to communicate our
blacklists to TSan, we extended its blacklisting capabilities
to enable a finer-grained selection at the level of source

1Some of us are associated with the OMPT efforts, thus facilitating our
collaboration further to benefit a wide variety of OpenMP runtimes.
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Figure 1: ARCHER tool flow.

lines. This allows the modified TSan used by ARCHER
to exploit our sequential and parallel blacklists, thus
guaranteeing a high degree of analysis precision and
scalability.

In more detail, after the LLVM intermediate representa-
tion (IR) and call graph are generated, our analysis trans-
forms OpenMP pragmas in the LLVM IR code as outlined
functions named omp_outlined.NUM, where NUM is an
identifier for each parallel region present in the code. Our
first pass visits the call graph, and for each omp_outlined
function finds all the functions called within it. For each
of these functions, the analysis is recursively applied.
Thereafter, data dependency analysis and sequential code
detection are applied (step (3) in Figure 1). For the former,
an existing tool in the LLVM/Clang suite called Polly [19]
is used. In the example given in Figure 2, the first for-
loop (lines 7–9) is data parallel (i.e., data independent)
and is blacklisted, while the second one (lines 12–14) is
not (exhibits a loop-carried dependence) and hence is not
blacklisted.

ARCHER also identifies sequential code sections (step
(4)). In Figure 2, lines 3 and 22 are sequential instructions
and are hence blacklisted. However, function sort(),
invoked at lines 4 and 18, cannot be blacklisted, as it
is invoked both from a sequential and parallel context.
The payoff due to such sequential code detection is
potentially very high in real-world projects where only
some of the loops are parallelized with OpenMP (based
on the benefits, the number of cores available, etc.). As
already pointed out, these analyses are greatly facilitated
by OpenMP’s structured parallelism.

B. Dynamic Analysis Phase

Our use of TSan for OpenMP race checking hinges
on the fact that OpenMP parallelism is typically realized
through a PThread-based runtime library. As already men-
tioned, unmodified TSan cannot be meaningfully used for
OpenMP due to the large number of false positives (“false
alarms”) it reports [7].
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Figure 2: Targeted instrumentation on a sample OpenMP
program.

The OpenMP standard specifies several high-level syn-
chronization points. Explicit synchronization points in-
clude barrier, critical, atomic, and taskwait.
Implicit synchronization includes single, task, and
the OpenMP reduction clause. As semantically in-
tended and realized in the runtime, the threads can
enter a critical section only in a serialized manner, thus
avoiding a data race. However, TSan lacks any knowledge
about these synchronization points. We use the Annota-
tion API of TSan to mark these synchronization points
within the OpenMP runtime to avoid such false positives.
This technique was successful in eliminating all false
positives in our benchmarks. Finally, the combination of
the ARCHER’s static analysis and new TSan instrumen-
tation that exploits the blacklist information produces a
selectively instrumented binary (step (6) in Figure 1).
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III. EVALUATION

We evaluate ARCHER in three stages through: (1) a
collection of smaller benchmarks called the OmpSCR
benchmark suite [25] (an OpenMP source code collec-
tion); (2) AMG2013, a non-trivial application from the
HPC CORAL benchmark suite [26]; and (3) the HYDRA
case study. Our evaluation is in terms of the effectiveness,
performance, and scalability of ARCHER compared to
Intel�Inspector XE. We also compare ARCHER against
an unmodified version of TSan applied to the same
benchmarks.2 When using TSan and ARCHER, we compile
our benchmarks using Clang/LLVM, and when using
Intel�Inspector XE, we compile them using the Intel
Compiler. When running our benchmarks under ARCHER,
we link them against our annotated LLVM OpenMP Run-
time [7], [27]. When running them under Intel�Inspector
XE as well as TSan, we employ the uninstrumented
version of the same runtime. We studied the following
configuration selections:
ARCHER: We employ four configurations: (1) the basic
configuration of ARCHER that applies both static and
dynamic analysis to reduce runtime and memory over-
head; (2) ARCHER run without static analysis support (only
dynamic race checking using the enhanced runtime to
avoid false positives is used); (3) apply just the Sequential
Blacklist; and (4) apply just the Parallel Blacklist.
TSan: When running the unmodified version of TSan, we
employ its default parameters.
Intel�Inspector XE: Intel�Inspector XE provides many
“knobs” for controlling performance and analysis quality
tradeoffs. Of these, we exercise three configurations: (1) a
default mode that checks memory accesses at the coarse-
grain granularity of four bytes; (2) the extreme-scope
configuration that sets memory access granularity at a
single byte (incidentally, this is the same granularity as
what TSan employs), which obtains higher precision at
higher cost; (3) the use-maximum-resources configuration
that allows Intel�Inspector XE to detect more data races,
but at the cost of increased memory consumption and
greater runtime overhead.
We perform our evaluation on the Cab cluster at

LLNL. Each Cab node has two 8-core, 2.6 GHz Intel
Xeon E5-2670 processors and 32GB of RAM. It runs the
TOSS Linux distribution (kernel version 2.6), which is a
customized distribution specifically targeting engineer-
ing and scientific applications. Runtimes and memory
overhead of all benchmarks were averaged across 10
executions, each time running with a variable number
of threads (ranging from 2 to 16). In the experimental
results, Release denotes the original benchmark char-
acteristics. SequentialBlacklisting and ParallelBlacklisting

2Despite this exercise yielding numerous false positives, it provides a
good performance baseline.
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c_fft 18.2 22.1 66.8 8.1 7.9
c_fft6 21.0 25.3 188.8 12.2 12.7

c_jacobi01 38.2 27.5 25.2 19.2 15.6
c_jacobi02 38.7 26.7 25.6 19.6 17.8

c_loopA.badSolution 5.1 7.0 41.1 5.9 3.9
c_loopA.solution1 10.2 12.2 64.9 9.4 10.5
c_loopA.solution2 5.1 7.1 41.2 5.5 3.6
c_loopA.solution3 4.5 5.8 42.1 5.1 4.2

c_loopB.badSolution1 6.2 7.5 36.8 5.5 3.8
c_loopB.badSolution2 15.6 16.2 43.7 2.3 2.3

c_loopB.pipelineSolution 5.4 7.8 36.7 5.6 3.6
c_lu 18.0 19.6 240.7 13.8 13.0

c_mandel 5.6 5.4 5.3 1.7 1.7
c_md 12.7 21.1 253.4 197.3 197.1
c_pi 11.1 10.7 11.1 2.3 2.6

c_qsort 14.2 16.9 34.1 5.8 5.7
c_testPath 133.0 133.6 138.3 18.3 17.9

cpp_qsomp1 57.5 57.4 289.5 18.0 18.1
cpp_qsomp2 57.8 57.6 286.6 17.9 11.9
cpp_qsomp5 56.8 62.5 338.2 20.4 20.8
cpp_qsomp6 57.5 57.9 253.5 18.2 11.9
cpp_qsomp7 57.8 57.8 229.3 18.8 18.3

Mean 29.5 30.3 122.4 19.6 18.4
Median 16.8 20.3 54.3 10.8 11.2

Geometric Mean 18.3 20.2 71.5 10.0 8.8

Table I: Execution slowdown factor for various tool con-
figurations.

denote that just those blacklisting strategies are exploited,
ARCHER denotes that both are used, while ARCHER “no SA”
denotes that none are used.

A. OmpSCR Benchmark Suite

We chose the OmpSCR benchmark suite (see Table I)
primarily because it harbors a few known races, as re-
ported in prior work [8]. We, however, found several
additional races not previously reported. With respect to
each tool and configuration, we now describe the overall
analysis quality followed by the runtime overheads. Then,
we summarize the overall merit of these tools by plotting
their analysis quality vs. performance scores.
Our evaluation shows that ARCHER detects all of the

documented races in all configurations. In particular, it
discovered six such races in the following benchmarks:
c_loopA.badSolution, c_loopB.badSolution1,
c_loopB.badSolution2, c_testPath, c_md, and
c_jacobi3. In addition, ARCHER reported six previ-
ously undocumented races in the following C++ bench-
marks: cpp_qsomp1, cpp_qsomp2, cpp_qsomp3,
cpp_qsomp4, cpp_qsomp5, and cpp_qsomp6. (We
manually verify that all the reported races are real.) In
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Figure 3: Runtime and memory overhead of the tools on the OmpSCR benchmark suite executed with 16 threads.

contrast, Intel�Inspector XE incurs varying degrees of
accuracy and precision loss in all three configurations.

In term of accuracy (the number of correctly de-
tected races divided by the number of true races that
should have been detected), Intel�Inspector XE, in its
default and extreme-scope configurations, misses races in
benchmarks c_loopB.badSolution1, cpp_qsomp1,
cpp_qsomp2, cpp_qsomp5, and cpp_qsomp6. On
the other hand, Intel�Inspector XE under the max-
resources configuration detects most of these races,
though it still misses the races in cpp_qsomp5 and
c_loopB.badSolution1.

In terms of precision (the number of correctly detected
races divided by the number of all the races detected,
including false positives—i.e., “false alarms”), ARCHER

in both configurations3 incurs no false positives, while
Intel�Inspector XE does. For example, in benchmark
c_md, Intel�Inspector XE reports an additional race
that is clearly a false positive, as documented in related
work [28]. In addition, in cpp_qsomp7—which uses the
tasking construct as per OpenMP 3.1—Intel�Inspector
XE reports two false positives, which ARCHER in both
configurations correctly avoids reporting as races. These
results clearly demonstrate that ARCHER accurately un-
derstands the OpenMP task synchronization semantics.
We now discuss in detail performance results in terms

3We omit the evaluation of ARCHER in the Sequential and Parallel
Blacklisting configurations for the OmpSCR benchmark suite since the
results for those configurations match the results of ARCHER without
static analysis.
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Figure 4: Precision and accuracy; in parentheses we
report the number of reported races and false positives.

of runtime and memory overheads. We only present the
results for 16 threads because the tools incur similar
overheads as we vary the number of threads.4 Figure 3
details runtime and memory overheads for benchmarks
in the OmpSCR benchmark suite. In a nutshell, ARCHER
outperforms Intel�Inspector XE across all of its configu-
rations on most of the benchmarks. Intel�Inspector XE
incurs the least overhead in its default configuration, but
this comes at the expense of degraded analysis quality.
The extreme-scope configuration of Intel�Inspector XE,
which is closer to the ARCHER’s analysis granularity, incurs
much higher overhead than ARCHER with a few excep-
tions. The max-resources configuration results in a very
high resource consumption and its overheads are always
higher than that of ARCHER.
ARCHER performs slightly better with static analysis

support than without, catching all the data races in
both cases. This can be mainly attributed to the fact
that the OmpSCR benchmarks are small (in terms of
the lines of code), and hence static analysis finds very
few blacklisting opportunities. Still, ARCHER with static
analysis support is overall 15% faster on the average. In
Section III-B, we show that on real-world HPC application
static analysis reduces much more the runtime overhead,
thus underscoring its importance in practice.
We assess the merits of the tools by plotting their

analysis quality against performance. Table I shows the
execution slowdown for each of the OmpSCR benchmarks
under each of the tool configurations. We give the mean,

4We omit three OmpSCR benchmarks in our performance results. The
data race in c_jacobi3 highly influences the execution time of the
benchmark, varying it by a factor of 1000 from run to run. The other
two are cpp_qsomp3 and cpp_qsomp4, where data races cause them
to crash.

Figure 5: Overall merit expressed as analysis quality vs.
performance.

median, and geometric mean in the last three rows. For
space reasons, we omitted our other statistical measure-
ments. However, using a confidence level of 0.05, we com-
pared the slowdown distributions of each configuration
(i.e., how our 10 measurements varied for each target
benchmark) and verified that the distributions of ARCHER
and ARCHER “no SA” do not overlap for a majority of
cases. This indicates that the difference in performance
between ARCHER and ARCHER “no SA” is statistically
significant. In addition, Figure 4 gives the precision and
accuracy of the tools, displayed with their true and false
positives counts. The plot show that ARCHER provides the
best analysis quality with respect to other state-of-the-art
race detectors including Intel�Inspector XE.
In Figure 5, we use an F-score (F1 score) [29] to capture

the overall quality of analysis. The F-score is a measure
of analysis quality that accounts for both accuracy and
precision (as defined previously) and is given by:

F1 = 2 · precision ·accuracy
precision+accuracy .

Thus, the F-score reaches its best value at 1 and worst at
0. In Figure 5 we plot each tool onto a two-dimensional
space defined by the F-score and slowdown geometric
mean. We use the geometric mean as our performance
metric because the mean and median are significantly
skewed by outliers. Indeed, the slowdown values run
the gamut from 253.4x to 1.7x (mainly because of the
very different charateristics and running times of the
OmpSCR benchmarks), and this biases the arithmetic
mean and median, while the geometric mean is designed
to compute a figure of merit under such circumstances.
The plot shows the general attributes of each tool in terms
of accuracy and runtime overheads, and our design goal
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is to create a tool that lies as close as possible to the
lower right corner. It is clear from the plot that ARCHER
best meets this goal, as compared to other state-of-the-art
tools: both versions of ARCHER (with and without static
analysis) do much better than Intel�Inspector XE in all
its configurations.

B. AMG2013 Case Study

To complement our OmpSCR study with a larger code
base, we perform an evaluation on AMG2013, which con-
tains approximately 75,000 lines of code. AMG2013 [30]
is a parallel algebraic multigrid solver for linear systems
and is based on Hypre [5], [31], a large linear solver library
developed at LLNL. Our experiments with ARCHER discov-
ered three races within AMG2013, which were previously
unreported. Thus, this application was useful to quantify
both the performance and analysis quality of the tools. In
the following, we compare the precision and performance
of unmodified TSan, each ARCHER configuration, and
Intel�Inspector XE in three different configurations.
The unmodified TSan, after reporting about 150

false positives, crashes and never finishes its analysis.
Intel�Inspector XE reports all three data races when it
is configured with use-maximum resources. When using
the extreme-scope configuration, it reports all three of the
races, but only when running with 16 threads. Finally,
when using the default configuration, Intel�Inspector XE
always misses one particular race of the three.
We now compare the performance of these tools in

all of the different configurations. Figure 6 shows the
AMG2013 execution slowdown factor introduced by the
tools (a) and the relative performance factor of ARCHER
(SA) against the other tools (b). Both ARCHER and
Intel�Inspector XE are dynamic checkers, and hence
they introduce a large runtime overhead with respect
to the application execution under no tool control (see
Figure 6a). However, it is clear that ARCHER has significant
performance advantages relative to other tools. In fact,
Figure 6b shows the relative performance of ARCHER
(with and without static analysis) against all of the three
configurations of Intel�Inspector XE. ARCHER is generally
2–15x faster than Intel�Inspector XE depending on the
number of threads. When compared to itself, ARCHER
without static analysis support improves the performance
by a factor between 1.2 and 1.5 depending on the number
of threads.
ARCHER also reduces the memory overhead relative to

Intel�Inspector XE in comparable configurations (modes
other than default). However, its memory footprint still
appears unnecessarily large. We surmise that this is
because of TSan’s runtime shadow memory allocation
policy, which ARCHER inherits unmodified. In partic-
ular, when an array is initialized, all of its elements
are accessed, and this causes TSan to allocate shadow

memory corresponding to the entire array during initial-
ization. Thereafter, TSan does not selectively deallocate
this shadow memory, for instance, based on whether
the array locations are live beyond a certain point. In
our future work, we plan to confirm this, and then
achieve selective deallocation—a possibility suggested by
OpenMP’s structured parallelism model.
The overall gains due to static analysis depend on the

proportion of sequential regions (for Sequential Blacklist-
ing) and data independent loops (for Parallel Blacklisting).
Our future work will focus on characterizing these gains
across many more large case studies.

C. ARCHER Resolves Real-World Races

We now present how ARCHER aided LLNL scientists
in resolving the intermittent crashes in HYDRA men-
tioned in Section I. This investigation was spurred into
action when our AMG2013 experiment discovered the
three races mentioned earlier. Of the three data races
flagged by ARCHER, two5 were found in a fairly complex
OpenMP region spanning over 400 source lines with tens
of reaching variables. The fact that these flagged sites were
contained within a deeply nested control-statement level
further complicated manual analysis; thus, we contacted
the developer for further validation.
In response, the developer confirmed that both were in-

deed true races. Specifically, one thread accesses the first
element of a portion of an array defined by P_diag_i
and P_offd_i (belonging to the next thread), while the
second thread subtracts a number from this element.
However, because the number being subtracted for this
particular element was zero, this condition was never
detected during testing. While programmers often con-
sider this type of races (i.e., multiple threads writing
the same value to the same memory location) benign,
the developer did recognize that the containing function,
hypre_BoomerAMGInterpTruncation, was one of
the routines that they had to disable OpenMP paralleliza-
tion on for reliable use within HYDRA.
Encouraged by our findings, the application’s team

resumed their debugging of this issue. They applied
a fix to these benign data races to the latest Hypre
release (2.10.0b) and reran the simulation. This time,
however, the simulation failed in a different way: a crash
occurred very quickly and much more deterministically.
Next, we applied ARCHER to this Hypre release using a
representative test code provided by the developer, and
ARCHER reported several additional benign data races;
the races were detected between lines 2313 and 2315 of
par_coarsen.c where threads write the constant 0 to
the same element in an array: CF_marker[j] = 0.

5Specifically, one between the memory accesses at lines 1183 and 1248
and the other at lines 1184 and 1249 within par_interp.c
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Figure 6: AMG2013 execution slowdown factor introduced by the tools (a) and the relative performance factor of
ARCHER (SA) against the other tools (b).

The developer was initially skeptical that these races
were the root cause because threads write the same
numerical constant: 0 in the coarsening and 1 in
par_lr_interp.c. However, when we fixed all of these
races, for example by synchronizing the respective as-
signments with OpenMP critical, the crashes no longer
appeared. We theorize that the compiler (IBM XL) used
on this platform, which would assume race-free code for
optimization, transformed the code in such a way that
those benign races turned into harmful ones, a pitfall
described previously by Boehm [16].
While the developer is currently trying to find a way

to resolve the races in a more performant manner, it was
made clear that data race checkers like ARCHER, which are
tailored to large HPC applications, are crucial to avoid a
programmer productivity loss on such elusive bugs.

IV. RELATED WORK

Data race detection in general is one of the most widely
studied problems in concurrent program design and has
been shown to be NP-hard [32]; a complete survey is
beyond the scope of this section and so we focus on
closely related approaches for correctness checking.
According to Erickson et al. [33], data races must be

taken as “the smoking gun” for any number of root causes:
insufficient atomicity (as per intended code behavior),
an unreliable communication idiom, unintended shar-
ing [34], or a misunderstanding of how generated code
behaves vis-a-vis the higher level program view (including

possible miscompilation [16]). Static race detection meth-
ods provide high checking efficiency, but are known to
generate false positives (e.g., [35], [36]); each false positive
can be a month of wasted reconfirmation time [37].
Polynomial-time race checking can often be achieved
under structured concurrency [11]. Predictive methods
attempt to find many more “implied” races based on an
initial execution through the program (e.g., [38]).
ARCHER derives much of its efficiency by avoiding the

instrumentation of independent loop iterations as well
as sequential code regions. These approaches to achieve
parsimonious instrumentation have recently been shown
effective in the context of TSan and PThread programs
through a technique called section-based program anal-
ysis [39]. The idea of specializing race checking has
also taken root in the context of GPU programs where
symbolic methods coupled with the idea of using a two-
thread abstraction scheme have become popular [40]–
[42]. This approach is also, in principle, applicable to
OpenMP data race checking [9].

V. DISCUSSION

Despite OpenMP being around for over two decades,
there are no practical data race detectors for OpenMP
programs that an HPC practitioner can use in the field
today; ARCHER is the first such race checker and its
approach is both timely and necessary to provide the
widening field of OpenMP programming with this critical
correctness tool capability. In fact, the main developer of
TSan has taken active interest in our work, and even the
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LLVM community has helped us by supporting TSan on
the PowerPC platform [43].

While ARCHER has proven to be useful at debugging
real-world races in OpenMP applications, we now discuss
the practical implications of our approach with respect
to (1) features in the latest OpenMP specifications and
(2) the use of compiler optimization flags.

A. Latest OpenMP Specifications

The OpenMP Architecture Review Board released the
latest OpenMP specification (Version 4.0) in July 2013.
We expect that it will take major compilers a few years
to come to full compliance with this specification. At
the point of writing, there exists no compiler that can
fully support OpenMP 4—including its device construct.
The OpenMP branch of Clang/LLVM, under which we
demonstrate our approach, supports only OpenMP 3.1.
While this practical limitation only allowed us to explore
the problem space in OpenMP 3.1, we recognize that
OpenMP 4, when implemented by compilers and thus
adopted by our applications, will present a new set of
challenges to our approach.

In particular, with the device construct, OpenMP
threads will be run not only on CPUs but also on ac-
celerators, such as GPUs, which could also be subject to
the harmful effects of data races. Unfortunately, tooling in
this area is not as comprehensive as designers may like.
For example, the CUDA Memcheck tool [44] is limited
in that it can only detect data races that occur in the
thread-block level shared memory space; yet, in practice,
races also occur in the global memory scope [42]. Given
the current trends to provide coherent memory between
CPUs and GPUs [2], it is clear that the community will
need more comprehensive race detection techniques. In
addition, because of the higher numbers of OpenMP
threads that can run on GPUs, techniques to further
enhance scalability (e.g., by exploiting thread symmetry
relationships) must be researched and developed.

B. Compiler Optimization Flags

Recent work [16] suggests that it is critical to pinpoint
and fix data races that many programmers consider
benign. In particular, the presence of any data race can
lead a compiler to turn a benign race into a harmful one,
even when code transformations that are considered safe
are used. In this regard, ARCHER can best detect data races
at the source level with no compiler optimization (-O0).
This is because an optimization can hide the presence of
a race through transformations. Further, there could be
data races introduced through an illegal transformation.
This is a problem within the compiler and ARCHER does
not pursue this class of errors.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented ARCHER, an OpenMP
data race checker that embodies the design principles
needed to cope with and exploit the characteristics of
large HPC applications and their perennial development
lifecyle. ARCHER seamlessly combines the best from static
and dynamic techniques to deliver on these principles.
Our evaluation results strongly suggest that ARCHER meets
the design objectives by incurring low runtime overheads
while offering very high accuracy and precision. Further,
our interaction with scientists shows that it has already
proven to be effective on highly elusive, real-world errors,
which can significantly waste scientists’ productivity.
However, our challenge does not end here. As part

of bringing ARCHER to full production, we must further
innovate. In particular, we need to reduce its runtime
and memory overheads further so as to benefit a wide
range of production uses. For this purpose, we will keep
tapping into a great potential in the static analysis space.
For example, ARCHER currently classifies each OpenMP
region with the binary classification system: race free or
potentially racy. More advanced technique will allow us
to move away from the binary logic. In fact, we plan
to crack open each of these potentially racy regions and
apply fine-grained static techniques in order to identify
and exclude race-free sub-regions within it. Exploiting
symmetries in OpenMP’s structured parallelism is another
venue we plan to explore. Adequately defined symmetries
will allow ARCHER to target a smaller set of representative
threads and memory space for further overhead reduc-
tion.
Clearly, the aforesaid challenges cannot be pursued

single-handedly. To enable communal participation (as
noted earlier), we have released ARCHER in the public
domain [10], and are looking forward to input from the
community.
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