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ABSTRACT
With greater adoption of various high-level parallel programming

models to harness on-node parallelism, accurate data race detection

has become more crucial than ever. However, existing tools have

great difficulty spotting data races through these high-level models,

as they primarily target low-level concurrent execution models

(e.g., concurrency expressed at the level of POSIX threads). In this

paper, we propose a novel technique to accurately detect those data

races that can occur at higher levels of concurrent execution. The

core idea of our technique is to introduce the general concept of

Thread-Local Concurrency (TLC) as a new way to translate the

concurrency expressed by a high-level programming paradigm into

the low execution level understood by the existing tools. Specifically,

we extend the definition of vector clocks to allow the existing

state-of-the-art race detectors to recognize those races that occur

at the higher level of concurrency with minor modifications to

these tools. Our evaluation with our prototype implemented within

ThreadSanitizer shows that TLC can allow the existing tool to

detect these races accurately with only small additional analysis

overheads.
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1 MOTIVATION
Effectively and efficiently exploiting on-node parallelism is crucial

to delivering requisite computational power to today’s applications.

As this need has arisen from a wide range of domains, not only from

High Performance Computing (HPC), but also from other areas of

computing such as data-intensive and even technical computing,

many high-level parallel programming models, in response, have

emerged and have been adopted.

One of the main characteristics of these models is that they

decouple user-level abstractions used to express concurrency from

how the concurrent work units are run in parallel. A user can

express the concurrency more productively using their richer and

higher-level concurrency idioms, and the runtime system of these

models then maps this to the lower levels of concurrent execution

(e.g., POSIX thread level). In the last few decades, such decoupling

has become so popular that these features are found inmanymodels:

e.g., non-blocking communication in MPI or PGAS approaches,

tasks in OpenMP or Cilk, and offloading of execution to a co-

processor with CUDA, OpenACC or OpenMP.

A data race condition is inarguably the most malignant form of

parallel interaction in any shared memory programming model.

This condition occurs when two or more threads can access shared

data without proper synchronization, and at least one themmodifies

the data. The result can change depending on which thread wins

this race. But they are notoriously difficult to catch, in part because

they can be difficult to spot and reproduce through traditional

testing. As the high level programming models exploit concurrency

and parallelism, they are also subject to the adverse effects of the

races.

Automatic data-race detection in general is one of the most

widely studied problems in concurrent program design. And there

are largely three common approaches. The most common data race

detection techniques are happened-before analysis (e.g., ThreadSan-

itizer [22]), lock set analysis (e.g., Eraser [20]), or a hybrid approach

that combines these two analyses (e.g., Helgrind [9]). While lock

set analysis can potentially detect more data races, it is also prone

to create more false alarms. Thus, in practice, happened-before

analysis-based tools have gained most popularity.

Independent of the analysis approach, dynamic runtime data race

detection tools must collect information about memory accesses

and synchronization. Some tools like Helgrind and Intel Inspector
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use binary instrumentation at runtime to collect the information.

ThreadSanitizer makes use of compile time instrumentation. This

allows a targeted analysis of selected compilation units and ignore

other parts of the code. When analyzing application code, the appli-

cation developer needs to understand the issues in their own code

and to a certain degree should assume that the runtime libraries

he/she use behaves correct; debugging runtime libraries is not the

application developer’s business.

In the Archer project [4] we already started to introduce this

abstraction for OpenMP applications. Synchronization information

is tracked at the abstraction of OpenMP synchronization seman-

tics [18] using the new OpenMP tools interface (OMPT) which is

added in OpenMP 5.0. Archer registers callback functions for all

OMPT synchronization events. In these callback functions we call

into the ThreadSanitizer runtime to annotate the OpenMP synchro-

nization semantics. The OpenMP runtime library is not further

instrumented. This allows to exchange the OpenMP runtime imple-

mentation and still have the synchronization information, as long

as the runtime provides the new OMPT interface. Unfortunately,

the current implementation of ThreadSanitizer does not allow to

completely ignore non-instrumented code. Function calls to some

basic memory management functions, like memset or alloc, are al-

ways intercepted and can lead to false alarms in non-instrumented

code.

For MPI this approach of ignoring the runtime library and anno-

tatingMPI semantics can avoid the issues of false alerts known from

using Valgrind and Helgrind with OpenMPI [1]. We will discuss the

synchronization semantics of MPI function calls in the next section.

The memory access semantics of MPI calls can be reported to the

analysis with the help of a PMPI wrapper.

Many tools implement happened-before analysis based on vector-

clocks to distinguish synchronized and concurrent events. Events

before the latest recorded synchronization are called synchronized,

while events after the synchronization are considered concurrent.

Using this distinction, the tool can then detect multiple concurrent

accesses from different execution units (e.g., threads, processes, etc.)

that happen to access the same memory location; with at least one

of the concurrent accesses being a write access, the tool reports a

race.

For this approach, a tool must maintain a vector clock for each

concurrent execution unit and each vector clock needs an entry

per concurrent execution unit. Current state-of-the-art tools focus

on race detection for threaded codes and target a low-level thread

model that typically matches operating-system-level entities. This

means that the number of execution units, and with that the size of

the vector clocks, equals the number of OS threads. As this number

in most cases matches the number of hardware cores or threads,

the vector clocks are guaranteed to be of reasonable size.

However, this approach forces users to reason about races that

are meaningful at the OS level, rather than at the level of the

programming abstraction they are using for concurrency: i.e., it

ignores implicit synchronization given in programming models and

reports races at an abstraction level that does not match the user’s

source code. This is another reason, why such tools generate false

positives which programmers then manually have to sort through.

To overcome this, we need a new generation of race detection

tools that recognize and operate at the same abstraction level the

user uses to express his or her concurrency. This, however, turns

any concurrent activity in the programming abstraction into a

concurrent execution unit for the race detector. As we will show,

even with medium sized workloads, this can lead to numbers of

concurrency units that can be orders of magnitude higher than the

concurrency at the operating system (OS) level, rendering the use

of traditional vector clocks infeasible. Although the programming

abstraction introduces new levels of concurrency, technically each

hardware unit only executes one abstract execution unit at a time.

To overcome this challenges and provide feasible, low-overhead

tools that can detect races at the abstraction level of the program-

ming model, we introduce the general concept of Thread-Local
Concurrency (TLC) as a new concept to enhance the operating sys-

tem level of abstraction. As its main advantage, it provides a model

to analyze concurrency within a single OS thread, allowing us to

work at the user’s level of abstraction with the cost of an OS level

abstraction. In particular, this paper makes the following contribu-

tions:

• Introduce the concept of Thread-Local Concurrency (TLC) to
reason about concurrent execution units within individual

OS threads;

• Illustrate howwemap the concurrency expressed in different

programming paradigms to TLC;

• Explain how TLC analysis reduces memory complexity for

vector clocks from O(n2) to O(n ∗ t) and the synchroniza-

tion cost from O(n) to O(t). Where n is the concurrency

provided by the programming paradigm and t is the visible
concurrency at the operating system level.

We implement our new technique in ThreadSanitizer, a widely

used, state-of-the-art race detector. We provide an extensive over-

head evaluation and demonstrate how we can use our tool to detect

data races that occur in OpenMP task parallel programs.

2 EXAMPLES OF CONCURRENCY
ABSTRACTIONS

Modern programming models provide several mechanisms to ex-

press concurrency. Such capabilities are crucial to exploit the grow-

ing node concurrency we see in today’s systems as well as to effi-

ciently overlap computation and communication. However, such

abstractions for concurrency also open the door for data races

caused by the concurrency introduced by them.

In this section we discuss several use cases with different con-

currency abstractions, in particular the concurrency semantics of

MPI non-blocking communication and the concurrency introduced

by the OpenMP task and target constructs. We show how data

races affect these semantics and why conventional detection tools

fail to adequately detect those. Each of the selected examples is a

representative for a group of similar programming models to which

the observations can be equally applied to.

2.1 Non-blocking Communication in MPI
In MPI, a non-blocking initiation function (like MPI_Irecv or

MPI_Isend) is used to receive or send data in the background, while
continuing the execution and potentially finishing some calculation

instead of blocking until the communication is finished. A call to a

145



Thread-Local Concurrency HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

MPI Process MPI Library

1

2

3

4

5

MPI Isend(buf1,r1)

MPI Irecv(buf2,r2)

buf1[0] += buf2[0]

MPI Wait(r1)

MPI Wait(r2)

read(buf1)

write(buf2)

Figure 1: For non-blocking communication, the MPI library can
read or write the buffer anytime between the initiation and comple-
tion call. Changing a send buffer or changing or reading a receive
buffer in this interval leads to undefined behavior.

MPI_Isend(buf1, 1, MPI_INT, ..., &r1);

MPI_Irecv(buf2, 1, MPI_INT, ..., &r2);

buf1[0] += buf2[0];

MPI_Wait(&r1, ...);

MPI_Wait(&r2, ...);

Listing 1: Source code sketch for Figure 1

completion function (like MPI_Wait) synchronizes and finishes the

communication.

For non-blocking communication with send semantics, the appli-

cation is not allowed to change the memory in the send buffer after

the initiation and before the completion call – as depicted in (1)

and (3) in Figure 1. For non-blocking communication with receive

semantics, the application is not allowed to access the memory

passed to the MPI library as the receive buffer after the initiation

and before the completion call – as depicted in (2) and (4) in Figure 1.

Therefore, the read of buf2[0] and the write to buf1[0] each are

in conflict with the related MPI communication call.

At the MPI abstraction layer, the non-blocking communication

is an additional execution unit that forks with the initiation call,

performs read or write operations representing the send or receive

semantics, and joins with the completion call.

MPI implementations are free to use a communication thread

which helps to make progress in communication while no MPI

function is active. Depending on the implementation in the MPI

library, data race detection tools working on the operating system

abstraction level cannot detect a violating memory access as a data

race if the MPI library executes communication on the application

thread. Even for the case of an MPI implementation that executes

communication on a helper thread, a tool might miss the access if

the memory accesses inside the MPI library are not instrumented

or the conflict is between multiple communication calls.

2.2 OpenMP Tasks
OpenMP Version 3.0 introduced tasks as a new concept. With the

task construct, the application developer can explicitly split work

into chunks, that either execute immediately or are deferred for

later execution. Deferred tasks can be executed by any threadwithin

a group or team of threads. Without further synchronization, any

pair of tasks could be executed concurrently on different threads in

the team.

Aside from explicit synchronization given by task dependencies

or a taskwait construct, all tasks in a team should be seen as

concurrent execution units. Consequently, accesses to the same

memory in concurrent tasks qualify as data races if at least one of

the accesses is a write operation. According to the memory model

of OpenMP, the result of the program is undefined if there is any

data race.

In Figure 2 we show the scheduling and happened-before arcs

for various concrete executions of the code in Listing 2. In Figure 2a

only the happened-before arcs (1,3), (2,5), (4,7) and (6,7) are given

by the execution model of OpenMP. The write to a in the master

region is synchronized with the write to a in the task, because the

task is created after the first write to a. The two tasks, however,

are not synchronized, so that the write to b in the two tasks is a

data race. Similarly, the write to c is not synchronized, because the
execution of the second task is not synchronized with the execution

after the task creation. Adding dependency in/out clauses on b to

the tasks and a taskwait construct after the second clause would

resolve the data races and introduce exactly the happened-before

arcs as in Figure 2b. The Figures 2b,c show potential schedules in

case the parallel team consists only of one thread. In Figure 2b,

the tasks are executed immediately after creation. In Figure 2c, the

tasks are executed in the implicit barrier at the end of the parallel

region. In both cases, the execution of the tasks is ordered due to

the runtime scheduling decision. A data race detection tool that

works at the operating system level cannot detect the data races on

b and c , if the tasks are scheduled to the same OS thread.

2.3 OpenMP Target Offloading
OpenMP Version 4.0 introduced target offloading to a device as

a new concept. With the target construct, a program can offload

data and code to a target device. While not further specified in the

OpenMP specification, a target device is in practice a co-processor

or graphics card (GPU).

As Munchhalfen et al. discuss [14], various kinds of data races

between accesses on host and target device are possible. If a tar-

get region changes memory and the host device reads the same

memory without synchronization (target update), the result is un-

specified. For an OpenMP target map clause, it is not specified

whether OpenMP copies or directly maps the memory to the tar-

get device. For systems with shared memory between host CPU

and target device, the latter is possible. Consequently, depending

on the actual data mapping, the host device would see the old or

the modified data. Even if the execution of the target code seems

synchronized with host execution, the mapped data region should

be seen as a concurrent execution unit. However, such races caused

by concurrent accesses from CPU and GPU are not covered at all

by current tools, which either entirely focus on CPU or GPU races

individually.

2.4 Hybrid MPI+OpenMP
To utilize the compute capabilities of todays supercomputers, more

andmore applications augment their code by hybrid distributed and
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1

3

4

2

5

6

7

#pragma omp parallel

#pragma omp master

a++;

#pragma omp task

{}
#pragma omp task

{}
c++;

#pragma omp taskwait

a++;
b++;

b++;
c++;

(a)

1,3

4,2,5

6

7

#pragma omp parallel

#pragma omp master

a++;

#pragma omp task

{}
#pragma omp task

{}

c++;

#pragma omp taskwait

a++;
b++;

b++;
c++;

(b)

1

2

7’,3

4,5

6,7”

#pragma omp parallel

#pragma omp master

a++;

#pragma omp task{}
#pragma omp task{}

c++;

//taskwait begin

//schedule task1

//schedule task2

//taskwait end

a++;
b++;

b++;
c++;

(c)

Figure 2: Synchronization information for OpenMP tasks. We assume shared(a,b,c). (a) Displays the synchronization information without
concrete scheduling of tasks. Only the arcs (1,3), (2,5), (4,7) and (6,7) are provided by the OpenMP semantics. The additional arcs (4,5) and
(6,.) are introduced by the immediate schedule in (b). The additional arcs (7,3) and (4,5) are introduced by the schedule at the taskwait in (c).

#pragma omp parallel

{

#pragma omp master

{

a++;

#pragma omp task shared(a,b)

{ a++; b++; }

#pragma omp task shared(b,c)

{ b++; c++; }

c++;

#pragma omp taskwait

}

sleep(2); // emulate load

}

Listing 2: Source code for Figure 2

shared memory parallelization. Often this is a combination of MPI

and OpenMP, but also MPI and Pthreads can be found. While MPI is

still dominant in HPC, also several PGAS approaches draw attention

which can also be combined with multi-threading paradigms.

Hybrid parallel programs can be challenging for data race de-

tection tools. To understand all possible data races of a hybrid

application, the tool needs to understand both paradigms. Analyz-

ing the paradigms separately is not sufficient as we can show with

the short code example in Listing 3.

If the code is executed by a single OpenMP thread, the code is exe-

cuted sequentially on all MPI processes. The array is initialized, then

swapped with the communication partner in the MPI_Sendrecv

and finally reduced into a single value. An MPI-only tool cannot

find a data race here, since there is no race.

If the code is executed by a single MPI process, i.e., ignoring the

MPI parallelism, the MPI operation is an in-place memcopy and the

MPI implementation might not touch any memory. In the case that

the MPI implementation actually copies the memory, a data race

detection tool might detect a race between the initialization of the

#pragma omp parallel

{

#pragma omp for nowait

for(j = 0; j < PSIZE; j++)

array[j] = rank * j + 2;

#pragma omp master

MPI_Sendrecv(array, PSIZE, MPI_INT,

size-rank-1, 42, array, PSIZE, MPI_INT,

size-rank-1, 42, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

#pragma omp for reduction(+:sum)

for(j = 0; j < PSIZE; j++)

sum += array[j];

#pragma omp master

printf("Rank %i total %i\n", rank, sum);

}

Listing 3: Hybrid OpenMP+MPI datarace

147



Thread-Local Concurrency HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

array and the copy. Although the copying in MPI_Sendrecv writes

back the value that was read before, another thread initializing an

element of the array might write to the element in between, so that

at the end the uninitialized value is written back to the array.

If an OpenMP data race detection tool completely ignores the

memory accesses by MPI, it cannot find a data race in this example.

This example emphasizes that a data race detection tool needs

to understand all parallel programming paradigms used in the

application and also understand their interactions to identify the

data races resulting from hybrid parallelization.

3 THREAD-LOCAL CONCURRENCY (TLC)
Existing data race detection tools fail for the use cases in the previ-

ous section. These tools work only at the abstraction level of the

operating system and hence cannot properly function under ad-

vanced concurrency scenarios. Instead we need tools that operate

at the level of the abstraction used to specify and implement the

concurrency. However, for this to work, any concurrent element

expressed in the programming abstraction (e.g., each OpenMP task,

each MPI asynchronous operation, or each OpenMP target con-

struct) has to be represented using its own concurrent execution

unit.

For a traditional tool based on vector clock analysis, this means

that the size of the vector clock, which grows with the number of

execution units, becomes unmanageable. Further, each execution

unit also needs to maintain its own vector clock to store and express

synchronization with the other execution units, which will also

be unmanageable. For 376.kdtree, one of the example applications

in our measurements, we have seen as many as 550 concurrent

tasks during the execution. This has a significant impact on both

space and compute requirements: the memory complexity of this

approach is O(n2)with n being the number of concurrent execution

units; while the complexity of a synchronization operation grows

linearly with the size of the vector clock, i.e., O(n). Both are not

scalable. For these scalability reasons, there is currently no tool

available that implements this fine-grain tracking of concurrency.

To overcome this problem and to provide a scalable solution, we

introduce the new concept of Thread-Local Concurrency (TLC). The
observation of execution shows, that each individual OS thread can

only execute one thing at the same time. The individual concurrent

execution strings from the previous section can be seen as time

slicing parallelization within an OS thread. Further, a concurrent

execution string is initiated or interrupted at some point and starts

or continues execution at some later point. Anything that happens

between initiation or interruption and starting or continuation is

concurrent. We can interpret an interruption as initiation of the

continuation and the end of the current execution; this means we

only need the concept of initiating and starting of TLC execution.

In Figure 2c the first task is initiated in (1), the second task is

initiated in (2). The first task then starts execution, which should

be seen as concurrent to (1,7’), when finished the second task starts

execution which should be seen as concurrent to (2,4).

With TLC we express the concurrency of the slices to under-

stand the additional concurrency at the right level of abstraction

while mapping the analysis to the same number of execution units

(and with that vector clock length) as OS based approaches. This

way we can analyze the additional concurrency without explicitly

introducing additional execution units, allowing us to combine the

benefits of both solutions.

We define Thread-Local Concurrency as all phases (time slices)

in the preceding execution of a thread that need to be seen as

concurrent to the current execution. This means for eventsX and Y
that are observed on the same thread with X observed earlier than

Y , still X ↛ Y , if X is in a thread-local concurrency phase of Y .

4 HAPPENED-BEFOREWITH TLC
Lamport [11] defined the happened before relation as an irreflexive

partial order of events:

Definition: The relation→ on the set of events of a system is the

smallest relation satisfying the following three conditions: (1) If a
and b are events in the same process, and a comes before b, then
a → b. (2) If a is the sending of a message by one process and b is

the receipt of the same message by an other process then a → b.
(3) If a → b and b → c then a → c . Two distinct events a and b are

said to be concurrent if a ↛ b and b ↛ a.
We kept the notion of processes in the definition, although we

mean any execution unit and in our use cases especially OS-threads.

We extend this happened before relation by the concept of TLC:

First we define a TLC-phase: All events between initiation of TLC
execution i and the starting of this TLC execution s on the same

thread create a new TLC-phase for s . The first event on a process

has no TLC-phase.

Definition: The relation→T LC on the set of events of a system

is the smallest relation satisfying the following three conditions:

(1) If a and b are events in the same process, a comes before b, and
a is not in an TLC-phase of b, then a →T LC b. (2) If a is the

sending of a message by one process and b is the receipt of the

same message by any process then a →T LC b. (3) With i as the
initiation of TLC execution and s as the starting of this TLC
execution in the same thread holds i →T LC s. (4) If a →T LC b
and b →T LC c then a →T LC c . Two distinct events a and b are

said to be TLC-concurrent if a ↛T LC b and b ↛T LC a.
An important thing to note is, that according to this definition,

TLC-phases propagate from initiation to starting TLC execution

and also across processes. On the other hand, one transitive path

from a to b is sufficient, so that rule (2) leads to cancellation of

TLC-phases and only an intersection of all these TLC-phases is

relevant. Furthermore, rule (3) in combination with the definition

of the TLC-phase mean, that no rule (2) synchronization between i
and s is relevant in s and onwards.

To achieve the pursued limited memory and analysis cost, we re-

strict the analysis in our implementation to consider only the latest

local TLC-phase on each thread, we call this the TLC-window. For
the implementation this means, that in addition to the traditional

synchronization information we only need the information about

the TLC-window interval (i , s).
In this section we briefly give an overview of general vector clock

based happened-before analysis. Then we discuss a step-by-step

work flow of the analysis with a TLC-aware vector clock. Finally, we

start with a transition system which describes the implementation

of a distributed vector clock and extend this transition system to

introduce the concept of a TLC-aware vector clock.
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4.1 Happened Before with Vector Clocks
A concrete implementation of a happened-before analysis based

on vector clocks (VC) in ThreadSanitizer is described by Sere-

bryany et al. [21]. This tool works at the operating system ab-

straction level and therefore assumes threads as the smallest build-

ing block for concurrency. This results in the assumption that an

event happened before another event on the same thread if it is

observed before the other event. The analysis in this tool is based

on distributed vector clocks. Each thread stores its own state of

synchronization in a VC, so there is one VC per thread. The i-th
value in this VC expresses the logical time of the latest synchro-

nization with the thread i . Events on thread i with a smaller logical

time happened before the synchronization, events with a larger

logical time are concurrent with the current execution on the local

thread. Synchronization between execution units is achieved by up-

dating the vector clock at a waiting execution unit with the values

from the signaling execution unit. To implement the transitivity

of happened-before, this update is a pairwise max operation on all

VC entries. In the implementation, the signaling thread stores the

own VC into a synchronization clock (SC) and the waiting thread

updates the own VC from the SC when the wait succeeded. So

there is a synchronization clock bound to each signal. In practice,

there is for example a SC bound to each lock, the SC is identified by

some common knowledge, like the address of the lock. Unlocking

happens before the next successful lock, so these operations store

and load from this SC. In [18] we describe in detain, how we bind

SC to various synchronization constructs for OpenMP.

A general problem with plain happened-before analysis is the

risk to miss actual races. Without further possibilities to express

synchronization, an unlock-lock sequence must be interpreted as a

signal-wait sequence. This means that any activity before the lock

on the first thread appears to be synchronized with any activity

after the lock on the other thread.

By limiting our analysis to the local TLC-window,we do not loose

accuracy compared to plain happened-before analysis, because

for signaling between threads, the happened-before relation is

equivalent with the common one. But we gain the ability to express

and analyze concurrency on the thread. The limitation to the local

TLC-window therefore compares to precision loss when going from

lock-set analysis to happened-before analysis.

4.2 Using a TLC Vector Clock
Figure 3 illustrates the use of a TLC vector clock to analyze the

memory accesses in Listing 2. For a simplified diagram, only a single

thread is noted in the vector clock. The clock value is followed by

the entries for the begin and the end of the TLC window. With

each operation the clock value is incremented. The master thread

increments a, which is logged as a write access at clock=3. Then

the thread creates two tasks, which are deferred for later execution.

The tool stores the vector clock and binds the information to the

newly created tasks. Finally, the master thread increments c and
the tools logs the write at clock=6 before the thread needs to wait

for the created tasks to be finished. The taskwait construct is a task

scheduling point, so one of the tasks gets scheduled. Semantically,

everything between creating the task and scheduling the task is

concurrent with the execution of the task. Therefore, the TLC

window for task t1 starts with the creation time (4) and ends with

the scheduling time (7). The latest access to a happened before the

task creation, which can also be derived from comparing the access

time (3) with the vector clock: 3 < 4⇒. For this task, the tool just

logs the access times for a and b. The TLC window for task t2 starts
with the creation time (5) and ends with the scheduling time (10).

The latest access to b was during the execution of t1; comparison

of the access time with the TLC window shows 9 ∈ (5, 10) ⇒

unsynchronized. Similarly was the latest access to c after the task
creation. The comparison of the access time with the TLC window

shows 6 ∈ (5, 10) ⇒ unsynchronized. Since in both cases, a write

access was involved, the tool would report a data race.

Handling the taskwait-end is not TLC specific. To provide the

tool with all necessary synchronization information, all tasks store

their vector clock into a taskwait specific synchronization clock

when they finished execution. This clock is loaded at the taskwait-

end and results in the (13,0,0) vector clock.

4.3 Vector Clock Defined as Transition System
The transition system T describes a vector clock system as it is

used for happens before analysis in ThreadSanitizer, with a clock

vector for each of n threads and additionalm synchronization clock

(SC) vectors. The synchronization clock vectors are used to store

(send/signal) and load (receive/wait) clock vectors.

T = (States,→VC,L0)

States = Nn×(n+m) constitutes the state space of n + m-tuples

(t0, . . . , tn−1, s0, . . . , sm−1) where ti , sj ∈ N
n
represent the vector

clock for each thread respectively synchronization point. We ad-

dress the kth entry of the vector clock ti by ti ,k . We use the initial

state L0 with ti ,k = 0, sj ,k = 0 for all i = 0..(n−1), j = 0..(m−1),k =

1

2

7’,3

4,5

6,7”

(1,0,0)

(2,0,0)

(3,0,0)

(4,0,0)

(5,0,0)

(6,0,0)

(7,4,7)

(8,4,7)
(9,4,7)

(10,5,10)

(11,5,10)
(12,5,10)

(13,0,0)

write(a,3,T1)

initTLC(t1)

initTLC(t2)

write(c,6,T1)

startTLC(t1)

write(a,8,T1)
write(b,9,T1)

startTLC(t2)

write(b,11,T1)
write(c,12,T1)

#pragma omp parallel

#pragma omp master

a++;

#pragma omp task{}
#pragma omp task{}

c++;

//taskwait begin

//schedule task1

//schedule task2

//taskwait end

a++;
b++;

b++;
c++;

Figure 3: TLC vector clock illustration. The figure displays the vec-
tor (vector clock, concurrency window). The analysis for the second
increment of a shows that the previous access at 3 was before tB,
i.e., is synchronized. The analysis for the second increment of b
shows that the previous access at 9 ∈ (5, 10), i.e., was in the TLC
window and therefore is a data race. Similar for c: 6 ∈ (5, 10).
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0..(n − 1). We define the transition relation→VC⊆ States × States
as the smallest binary relation on States satisfying the rules:

(1) Clock tick on thread i:

(. . . , (. . . , ti ,i , . . . ), . . . )
tick

→VC (. . . , (. . . , ti ,i + 1, . . . ), . . . )
(2) Signal on thread i , using synchronization clock j:

(. . . , ti , . . . , sj , . . . )
signal

→ VC (. . . , ti , . . . ,Up(sj , ti ), . . . )
(3) Wait on thread i , using synchronization clock j:

(. . . , ti , . . . , sj , . . . )
wait

→ VC (. . . ,Up(ti , sj ), . . . , sj , . . . )

The update function Up on clock vectors as used in rules (2) and

(3) is defined as:

Up(a,b) = (max(a1,b1), . . . ,max(an ,bn ))

4.4 TLC Vector Clock
We now extend the concept of the vector clock system by a concur-

rency interval for a thread. For this, we extend the clock vector by

two values to mark the begin and end of the interval and one value

to identify the local thread:

C = (S,→TLC,L0)

The set of states S ⊆ N(n+3)×(n+m) constitutes the state space
of n +m-tuples (t0, . . . , tn−1, s0, . . . , sm−1) where ti , sj ∈ V ⊆ N

n+3

represent a state vector—consisting of a vector clock, concurrency

interval, and concurrency thread-id—for each thread (ti ) respec-
tively synchronization point (sj ). We address the kth entry of the

vector clock of ti with ti ,Ck , we address the whole vector clock

of ti with ti ,C , further we address the concurrency window with

ti ,W = [ti ,B : ti ,E ], and the thread-id for the window with ti ,T . In

summary the state vector is denoted as ti = (ti ,C , ti ,W , ti ,T )
T
. The

initial state L0 of the system is ti ,Ck = 0, sj ,Ck = 0, ti ,W = [0 :

0], sj ,W = [0 : 0], ti ,T = i , sj ,T = ∞ for all i = 0..(n − 1), j =
0..(m − 1),k = 0..(n − 1).

We define the transition relation→TLC⊆ S × S as the smallest

binary relation on States S satisfying above rules (1)-(3) as well as
the following additional rules:

(4) TLC-Signal on thread i , using synchronization clock j:

(. . . , ti , . . . , sj , . . . )
tlc-signal

→ TLC (. . . , ti , . . . ,Ups (sj , ti ), . . . )
(5) TLC-Wait on thread i , using synchronization clock j:

(. . . , ti , . . . , sj , . . . )
tlc-wait

→ TLC (. . . ,Upt (ti , sj ), . . . , sj , . . . )
(6) TLC-Init on thread i , using synchronization clock j:

(. . . , ti , . . . , sj , . . . )
tlc-init

→ TLC (. . . , ti , . . . , ti , . . . )
(7) TLC-Start on thread i , using synchronization clock j:

(. . . , ti , . . . , sj , . . . )
tlc-start

→ TLC (. . . , Start(ti , sj ), . . . , sj , . . . )

The rules (4) and (5) use the update function Upt/s defined as:

Upt/s : V × V→ V, with

Upt (a,b)
def
= Normt (Up

′(a,b))

Ups (a,b)
def
= Norms (Up

′(a,b))

The normalization function Normt/s fixes meaningless window

intervals that end before they begin and is defined as:

Normt/s : V→ V, with

Normt (a)
def
=

{
(aC , [0 : 0],aT )

T
: if aB >= aE

a : else

Norms (a)
def
=

{
(aC , [0 : 0],∞)

T
: if aB >= aE

a : else

The actual update function Up′ is defined as:

Up′ : V × V→ V, with

Up′(a,b)
def
=



©­­«
max(aC ,bC )

[bB : bE ]

bT

ª®®¬ : if aT >= n

©­­­­­«
max(aC ,bC )

[max(aB ,bB ) :

min(aE ,bE )]

aT

ª®®®®®¬
:

if aT = bT∧

aE < baT

©­­«
max(aC ,bC )

[max(aB ,bCaT ) : aE ]

aT

ª®®¬ :

if (aT = bT∧

aE >= baT )

∨(aT , bT∧

aT < n)

Rule (7) uses the initializing function Start defined as:

Start : V × V→ V, with

Start(a,b)
def
=

©­­­«
rC

{
rCj = bCj : if j , bT
rCj = aCj : if j = bT
[bCbT

: aCbT
]

bT

ª®®®¬
The definition of the Up function for (2) and (3) is extended to

set tB and tE to 0, tT is set to tid , for synchronization clocks sT is

set to∞. With this modifiedUp function, the transitions (2) and (3)

keep the semantic for happened-before arcs without TLC-window.

The Upt and the Ups function in the transitions (4) and (5) are

used to create a happened-before arc (rule 2) from one TLC-aware

state to another TLC-aware state. As described in the introduction

of this section, the resulting TLC-phases are an intersection of the

current state and the incoming message, considering also the time

since the last synchronization as a TLC-phase.

Since we only analyze the local TLC-window, the resulting TLC-

window is an intersection of the TLC-windows in the two state

vectors (second case ofUp′), again considering also the concurrency
phase after the last synchronization (third case of Up′). If the two
state vectors of a transition belong to different threads, we consider

only the concurrency phase after the last synchronization to cut

with the TLC-window (third case of Up′). The first case covers the
situation, where no TLC-window is stored in a SC.

The transition (6) is used to recycle a synchronization clock that

was potentially used for another synchronization before and store

the state of initiation of a TLC execution.With this optimization, the

number of synchronization clocks can be cut down to the maximum

number of concurrent execution units at any point during the

execution.
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The transition (7) starts execution with thread-local concurrency

information. The previously active synchronization information is

dropped and the state of the synchronization clock is loaded into

the thread state. Using the clock values from the synchronization

clock means that upcoming analysis will work on the base of the old

synchronization information. For the thread with TLC window, the

current clock value is used in the new vector clock, the TLCwindow

is built using the synchronization clock value and the current clock

value.

5 IMPLEMENTATION OF TLC
ThreadSanitizer (TSan), as described in section 4.1, is implemented

in latest GNU and LLVM/clang compilers and uses happened-before

analysis based on distributed vector clocks. Each thread has a local

vector clock (VC) that stores the latest synchronization with each

of the other threads. For each memory access, a thread writes a

log entry that associates the local entry of the VC and the own

thread id with this memory access. Further, the thread checks for

unsynchronized, colliding memory accesses on the same memory

location. For this, the thread iterates over the other log entries on

this memory location. In case of a potential collision, the thread

compares the clock value in the log with the clock value in the

local VC for the thread id in the log. The comparison provides the

information whether the other access happened before the current

access, or concurrently with the current access.

We base the implementation of our new TLC approach on the

ThreadSanitizer extension Archer that already annotates OpenMP

synchronization for ThreadSanitizer and is described by Atzeni et

al. [4], the annotations are described in detail in [18]. The extension

consists of implementation of TLC-analysis in the ThreadSanitizer

runtime and changing the OpenMP synchronization annotation in

Archer to include TLC-init and start for tasks. In this section we

describe the interface to annotate application synchronization and

how we integrate our new technique into ThreadSanitizer and the

OpenMP runtime annotations.

5.1 Annotating Happened-Before
Newer versions of LLVM expose a simple interface to annotate

synchronization or memory accesses in libraries or applications

for ThreadSanitizer. This interface is defined in the header file

llvm/Support/Compiler.h. The interface consists of the func-

tions:

• TsanHappensBefore(cv)
• TsanHappensAfter(cv)
• TsanIgnoreWritesBegin()
• TsanIgnoreWritesEnd()

The latter two functions allow to explicitly suppress ThreadSanitizer

analysis for parts of the code. The functions TsanHappensBefore
and TsanHappensAfter allow to annotate the beginning and the

end of an happened-before arc (rule 2) if both calls use the same

pointer argument cv.
As depicted in Algorithm 1, the TsanHappensBefore func-

tion updates the VC that is associated with the synchronization

point cv with the local VC. This implements the

signal

→ VC transi-

tion as described in the previous section. In the same way, the

Algorithm 1 Effect of happened-before annotation in ThreadSani-

tizer

procedure TsanHappensBefore(cv)
cv .clock ←max(cv .clock , thread .clock)

end procedure
procedure TsanHappensAfter(cv)

thread .clock ←max(cv .clock , thread .clock)
end procedure

TsanHappensAfter function updates the local VC from the VC of

the synchronization point. This implements the

wait

→ VC transition.

5.2 Annotate Happened-Before with TLC
We extend the interface of ThreadSanitizer by the following func-

tions, that represent the new relations (4)-(7) as introduced in the

previous section:

• TsanHappensBeforeTLC(cv)
• TsanHappensAfterTLC(cv)
• TsanInitTLC(cv)
• TsanStartTLC(cv)

We further extend the runtime library of ThreadSanitizer. We add

the TLC window to the thread state and to the synchronization

clock. The core data race analysis kernel now checks whether a

colliding memory access on the same thread was observed in the

TLC window. In this case we also report a data race. And finally,

we add an implementation for above new interface functions to the

ThreadSanitizer runtime.

5.3 TLC-Aware Analysis for OpenMP
In previous work we described the annotations necessary to ap-

ply conventional happened-before analysis on OpenMP applica-

tions [18]; this work already handles the synchronization seman-

tics of OpenMP task execution including task dependencies. For

OpenMP we call the ThreadSanitizer annotation functions building

on the new OpenMP Tools interface (OMPT), as described in the

draft release for OpenMP 5.0 [16]. As a part of the OpenMP tools

working group we upstreamed an implementation of OMPT into

the LLVM/OpenMP runtime [2] available with the 6.0 release.

Here we describe the TLC specific changes to this previous

work: On the task-create event, we store the state of the thread

into a synchronization clock bound to the new task using the

TsanInitTLC function. On the task-schedule event, which marks

the start of execution of the task, we load the synchronization clock

into the thread state using the TsanStartTLC function. With these

functions, the vector clock in the thread state is set to the vector

clock as seen during task creation.

The TsanInitTLC for task-create replaces the TsanHappens-
Before used by Archer to annotate that task creation happened

before task execution, the TsanStartTLC for task-schedule replaces
the TsanHappensAfter in the original Archer annotations. We use

these annotation calls as the fallback if the tool is used with a

compiler version that does not provide the new ThreadSanitizer

API.

To allow synchronization of sibling tasks, OpenMP offers the

concept of task dependencies to describe DAGs. Archer already
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handles task dependencies by introducing a happened-before arc

for each task dependency. For TLC-aware analysis, we replace

the TsanHappensBefore by TsanHappensBeforeTLC and Tsan-
HappensAfter by TsanHappensAfterTLC.

5.4 Annotation of New Memory
To fully map the memory access semantics from the programming

paradigm abstraction to the tool, we also need to handle the concept

of memory allocation and deallocation.

For the OpenMP task use case, TLC-enabled analysis would re-

port false alerts on stack usage between consecutive task executions,

since ThreadSanitizer cannot know that the stack of the previous

task was cleared in between. The internal annotation interface of

ThreadSanitizer already includes an interface function to describe

new memory, but no implementation:

• TsanNewMemory(addr,size)

Our implementation of this function deletes all memory access

log entries that belong to the provided memory range. With this

annotation function, we wipe all accesses to the stack above the

task scheduling when the runtime switches tasks.

6 MEASUREMENTS
To have the feature of TLC-aware data race analysis available,

we would like to apply ans upstream the necessary extensions

to ThreadSanitizer. This extension could introduce overhead for

applications that don’t need this feature. To evaluate the over-

head introduced by the TLC-aware data race analysis, we run

SPEC OMP 2012 [13, 24] on a machine with Intel Xeon E5-2650

v4 CPUs with 12 cores. We bind all threads to the same socket us-

ing OMP_BIND=close and OMP_PLACES=cores. Since the tools com-

pared introduce a runtime overhead of about 2-20x – in some cases

up to 80x – we only use the train dataset, which is the medium size

for this SPEC benchmark.We presented some similar measurements

for the basic data race analysis in [18]. For a complete overview on

synchronization characteristics of the SPEC OMP 2012 benchmark

kernels we refer to that paper. Differences in the reported base

runtime for some of the applications come from a recent kernel

update (meltdown mitigation) and the use of a newer compiler and

OpenMP runtime version.

We run ThreadSanitizer in benchmarking mode. In this mode,

ThreadSanitizer intercepts all memory accesses, logs the memory

access, analyses the memory access for potential data races. Also

synchronization information is processed. The only difference from

the normal mode is that in case of a detected data race Thread-

Sanitizer returns like there was no race instead of processing and

printing the report.

We use LLVM/clang compiler built from Feb 18 2018 sources

from git for the C/C++ codes and gfortran 6.2.0 for the Fortran codes.

Using gfortran for the Fortran applications was necessary since

by the time of the implementation of the tool no Fortran compiler

frontend for LLVM was available. Both compilers provide the flag

-fsanitize=thread to activate the compile time instrumentation

for ThreadSanitizer. Fortunately, the ThreadSanitizer implementa-

tions for GNU/gfortran and LLVM/clang are compatible and can

be exchanged.

We use a modified ThreadSanitizer runtime library based on

the runtime coming from clang where we implemented our addi-

tional annotations and the TLC-window the code can be found in

tlc branch of [3]. To apply our modified ThreadSanitizer runtime

library also to the Fortran applications, we compile the applications

with gfortran, but link the applications with clang:

FC=gfortran -fopenmp -fsanitize=thread -O3
FLD=clang -lomp -fsanitize=thread -lgfortran

6.1 Measurement Results
In Figure 4 we plot the slowdown of the tool, which is runtime with
tool divided by runtime without tool. We set the x-axis to 1, which

is the normalized runtime of the application, so that the remaining

bar represents the tool overhead. The figure shows pairwise the

results for measurement without and with TLC-aware analysis.

The left bar of each pair shows the overhead of currently available

ThreadSanitizer analysis, the right bar shows the overhead of our

updated implementation. As depicted, in most cases the measured

slowdown is in the 2-20x range as claimed in the ThreadSanitizer

documentation (“5-15x”[23]). But there are a some exceptions that

we discussed in detail in [18], here we focus on the additional

overhead of the TLC-aware analysis.

6.2 Overhead of TLC-Aware Analysis
As mentioned above, in Figure 4 we also plot the slowdown for TLC-

aware data race detection with ThreadSanitizer. The two expected

influence factors for runtime overhead introduced by TLC-aware

analysis are the additional three values in the state vector to be

copied on synchronization, which means additional cost mainly

for synchronization; as well as the additional comparison with the

TLC-window for colliding local memory accesses. For applications

without explicit tasks, this is only one comparison, but it still means

that an extra value, the end of the concurrency window, is loaded

and compared. This value also occupies a cache line, which poten-

tially would not be touched without TLC analysis. For applications

with explicit tasks, the previous access is compared with begin and

end of the concurrency window. This introduces additional cost for

applications which repeatedly access the same memory from the

same thread.

For most applications, we don’t see a significant change in run-

time overhead. These applications don’t show frequent synchro-

nization that could lead to additional overhead. For 367.imagick

we also expect most memory to be read only once while running

over the pixels of an image, so there shouldn’t be a lot of colliding

memory accesses.

The highest relative increase in tool slowdown we see is about

4% for 2 threads executing 370.mgrid331 and for all thread counts

executing 351.bwaves. We see about 3% for 360.ildbc, 362.fma3d

and 363.swim.

6.3 Validating the ThreadSanitizer Reports
Running the analysis, we were able to detect a data race in 367.imag-

ick, which is caused by a concurrent write to a shared variable inside

of a parallel region in magick_decorate.c:492. Making this vari-

able private for the parallel region would resolve the data race.
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Figure 4: Runtime overhead for executing SPEC OMP 2012 with ThreadSanitizer and synchronization annotations based on OMPT events

36 neigh = iam - 1

37 !$omp flush(isync)

38 do while (isync(neigh) .eq. 0)

39 !$omp flush(isync)

40 end do

41 CALL AnnotateHappensAfter(__FILE__,

__LINE__, isync(neigh))

42 CALL AnnotateHappensBefore(__FILE__,

__LINE__, isync(neigh))

43 isync(neigh) = 0

44 !$omp flush(isync,v)

Listing 4: Annotation of flush-based
customized synchronization in syncs.f90 of 371.applu331. Line
numbers refer to the original source code.

371.applu331 and 372.smithwa are applications that use flushes to

implement customized synchronization with conditional variables.

By carefully annotating the synchronization semantics for these

conditionals, we could avoid any false alerts for these applications;

unfortunately, this kind of annotations needs to be done by the

programmer, if the tool fails to understand handcrafted low-level

synchronization.

An example for such an annotation is shown in Listing 4. Here

we discuss the annotations for the sync_left function in syncs.f90

of 371.applu331. This file is also part of the LU application in

the NAS Parallel Benchmarks [5]. The thread spins in the while

loop on isync(neigh) until another thread changes the value to

1. With the annotation AnnotateHappensAfter, the tool is no-

tified about the end of an happened-before arc. The annotation

AnnotateHappensBefore starts another happened-before arc to

the thread, that will wait for the variable to be set to 0. Having

these annotations exactly at this place is crucial for correct analysis.

The annotation in the sync_right function is analogical.

For some of the Fortran applications we see warnings about lock-

order inversion coming from libgfortran. Because the file accesses

in the application only happen in the serial part, the lock-order

inversion is a benign issue. It is a known issue with ThreadSanitizer,

that it reports lock-order inversion, although only a single thread

accesses the lock.

Finally, in the initial reports for the two tasking applications we

got reports on data races for access to stack memory. This issue

was discussed in section 5.4, but shows that we can successfully

detect data races between tasks which are scheduled on the same

thread.

Algorithm 2 ThreadSanitizer annotations for non-blocking MPI

communication

procedure MPI_Isend(buf, req)

PMPI_Isend(buf, req)

req.bu f ← bu f
TsanStoreTLC(req.cv)

end procedure
procedure MPI_Wait(req)

PMPI_Wait(req)

TsanHappensBefore(tmp)

TsanLoadTLC(req.cv)

TsanReadMemory(req.buf)

TsanHappensAfter(tmp)

end procedure

7 APPLYING TLC TO OTHER USE CASES
In Section 2 we presented examples of concurrency abstractions

introduced by parallel programming paradigms. In the previous

sections we discussed how to apply TLC for OpenMP tasks and

how this enables ThreadSanitizer to detect a new class of races. In

this section we sketch how TLC enables ThreadSanitizer to apply

analysis for the other two concurrency abstractions—non-blocking

MPI communication and accelerator offloading.
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7.1 Annotation of Non-Blocking MPI
Communication

Non-blocking MPI communication, as sketched in Figure 1, is an-

other use case that can be handled with a TLC window. The MPI

interface provides an interception layer, called PMPI, that tools

can use to wrap any MPI call with their own functionality. In Al-

gorithm 2 we sketch how we use this to annotate the functions

MPI_Isend and MPI_Wait to enable ThreadSanitizer to detect un-

synchronized violating memory accesses of the application with

the asynchronous access of the MPI library to the communication

buffer.

For the initiation call, the information about the communication

buffer and the current vector clock is stored and bound to the

request handle.

For the completion call, the current vector clock is tem-

porarily stored with the TsanHappensBefore(tmp) call. The

call to TsanLoadTLC(req.cv) loads the synchronization in-

formation as present at the initiation time. The next call

TsanReadMemory(req.buf) annotates the memory access seman-

tics, this lets ThreadSanitizer log the memory access and analyze

conflicting memory accesses for this memory range. Finally, the

TsanHappensAfter(tmp) call restores the synchronization infor-

mation from the begin of the completion call. We implemented

Algorithm 2 as a prototype to detect data races in MPI applica-

tions. With this prototype, we could successfully detect a data race,

when accessing the send buffer of an MPI_Isend before the synchro-
nization with MPI_Wait. The prototype is very limited in function,

since only isend and wait are considered, and only base types are

supported. Therefore no evaluation with a real application is viable.

7.2 Annotation for OpenMP Offloading
The idea of annotating OpenMP offloading is quite similar to the

annotations used for MPI in Algorithm 2. Mapping memory to the

device is handled like the initiation for MPI non-blocking commu-

nication. When the memory is mapped back, it is annotated as a

write access. If the target data region ends without mapping the

memory back, the memory is annotated as read.

This strategy might overestimate the memory access pattern and

possibly lead to false alerts. An example would be an algorithm

that on the device writes to even entries of an array and reads the

odd entries. At the same time the host can read the odd entries. The

above strategy would report a race in this case.

If no device is available to offload a target region, the OpenMP

runtime would execute the code of the target region on the host. In

this case, we can annotate the execution of the target region to be

concurrent with the code outside the target region while annotating

synchronization as provided by OpenMP semantics.

8 LIMITATIONS OF THE TLC-WINDOW
In this section we discuss some limitations of the TLC window

for data race analysis. The limitations range in both directions,

omission of actual data races and false alerts for valid memory

access patterns.

8.1 False Alerts
With the TLC approach, we relax the synchronizationmodel coming

from strict happened-before analysis and introduce some excep-

tions. The assumption for this approach is that there is no implicit

synchronization between the execution of two applications. How-

ever, this assumption does not hold for all algorithms.

A valid OpenMP program can implement an algorithm, where

each task works on a thread specific section of a shared array. In

such a program, the allocation is synchronized with the accesses

to the memory in the tasks, because the tasks are created after the

allocation. Further, the execution can assume, that only one tasks

is active on a thread at the same time. Therefore, the access to the

array is also synchronized between the tasks. TLC-aware data race

analysis would flag the accesses to the results array as races in the

case that multiple tasks are scheduled to the same thread.

This issue is introduced by the assumption that tasks in a team

execute concurrently when not explicitly synchronized. This means

that also an analysis modeling each task as a concurrent execution

unit, as briefly sketched in Section 3, would have the same issue,

i.e., the issue is not caused by the simplification introduced by our

TLC-aware analysis.

8.2 Omission of Data Races
To limit the memory cost of TLC-aware analysis, we use the TLC

window, which restricts the analysis to a single concurrency phase.

For the use cases discussed in Section 7 this does not imply any

restriction. Multiple concurrency phases would occur when TLC-

aware happened-before arcs are used. We carefully designed the

transitions in Section 4 in a way that we restrict the stored concur-

rency phases to the latest phase, the TLC window. For OpenMP

tasks, TLC-aware happened-before arcs are used to express the

synchronization between parent and child task for task creation

and to express synchronization by task dependencies. With the

TLC window we can express the concurrency of the executing task

E with previous tasks Pi that were accidentally scheduled onto the

same thread. When the executing task creates a new task N , this

new task has no synchronization with the tasks Pi , so N should

be concurrent with Pi . When the task N is scheduled, the interval

from creating the task to execute the task is the latest concurrency

phase. With the single TLC window, we cannot express Pi to be

concurrent with N .

Also in the case of immediate execution of the included tasks,

like in Figure 2b, we cannot see the concurrency of the tasks, as the

first task finishes execution before the second task is created.

To model TLC-aware analysis equivalent to an analysis that

models tasks as independent execution units, we would need to

transitively propagate concurrency information. Also, if N is sched-

uled on a different thread than E, we would need to keep the con-

currency phase of executing Pi . Hence, for an equivalent model,

we would need a list of concurrency intervals per thread, not only

for the local thread.

9 RELATEDWORK
Data race detection is a widely studied problem and it was shown

to be NP-hard by Netzer and Miller [15]. Several tools exist to

analyze data races in OpenMP applications, like Intel Inspector,
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Archer [4], Helgrind [9] and Oracle Thread Analyzer. Most of these

tools do a good job for fork-join parallelism in applications that

mainly use OpenMP parallel teams. Of these tools, only Archer

understands the synchronization implied by OpenMP tasks and

task dependencies. ThreadSanitizer as the underlying tool of this

work, as well as Archer, implement the FastTrack algorithm [7]

with a limited history of accesses per memory location, which

makes it similar to iFT [8]. This not only makes memory overhead

predictable in space and time, but also allows the use of all available

processing units concurrently for execution.

Other work on data race detection for asynchronous execution

proposes the SP-bag [6] and ESP-bag [19] algorithms. These ap-

proaches serialize the execution and implement a depth first search

for the analysis of data races. This approach does not scale with the

growing number of processing units available on today’s and future

machines. Further, applying the SP-bag algorithm to non-blocking

MPI communication would mean serializing all MPI communi-

cation, which ultimately might introduce a deadlock in the MPI

communication.

Some papers discuss how to exploit symmetries and regulari-

ties in OpenMP fork-join programs to improve scalability of data

race detection [10, 12]. While this is not directly applicable to

asynchronous tasks, especially the Offset-Span labeling suggested

in [12] might be extended to asynchronous workloads. Although

OS-labeling reduces the cost for exchange of synchronization infor-

mation, it does not provide the constant memory complexity per

memory access.

In recent years, for many applications in HPC memory band-

width became the bottleneck. For this reason, it is hard to compare

one approach with other approaches if there is no implementa-

tion available to obtain measurements with typical workloads on

current machines.

An orthogonal approach to improve accuracy of happened-

before based data race detection suggests active testing to enforce

scheduling behavior that leads to data races [17].

10 CONCLUSIONS
In this paper we discussed data race detection for parallel pro-

gramming paradigms at two abstraction levels. One level is the

abstraction of the programming paradigm, the other level is the

operating system and base language level. Many parallel program-

ming paradigms introduce additional concurrency. We presented

a new approach to map the concurrency provided by various pro-

gramming paradigms down to the operating system layer. For this

purpose, we introduced the new concept of Thread-Local Concur-
rency or TLC. We showed the applicability of the approach to im-

plementations of OpenMP tasks and MPI non-blocking communica-

tion. Based on overhead measurements using the SPEC OMP 2012

suite, we were able to show that the introduced overhead of this

approach is low enough to make adding this feature permanently

to the ThreadSanitizer runtime is feasible. This will enable a tool

chain that can analyze hybrid MPI+OpenMP applications for any

kind of MPI or OpenMP specific data race at the same time.

The implementation of TLC-aware ThreadSanitizer and TLC-

aware analysis for OpenMP are available in [3].
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