
Noise Injection Techniques to Expose
Subtle and Unintended Message Races

Kento Sato, Dong H. Ahn, Ignacio Laguna, Gregory L. Lee,
Martin Schulz and Christopher M. Chambreau

Lawrence Livermore National Laboratory
7000 East Ave. Livermore, CA

{kento, ahn1, ilaguna, lee218, schulzm, chambreau1}@llnl.gov

Abstract
Debugging intermittently occurring bugs within MPI appli-
cations is challenging, and message races, a condition in
which two or more sends race to match with a receive,
are one of the common root causes. Many debugging tools
have been proposed to help programmers resolve them, but
their runtime interference perturbs the timing such that sub-
tle races often cannot be reproduced with debugging tools.
We present novel noise injection techniques to expose mes-
sage races even under a tool’s control. We first formalize
this race problem in the context of non-deterministic par-
allel applications and use this analysis to determine an ef-
fective noise-injection strategy to uncover them. We codi-
fied these techniques in NINJA (Noise INJection Agent) that
exposes these races without modification to the application.
Our evaluations on synthetic cases as well as a real-world
bug in Hypre-2.10.1 show that NINJA significantly helps ex-
pose races.

Categories and Subject Descriptors D.2.5 [Software]:
Distributed debugging; F.1.2 [Theory of Computation]: Al-
ternation and nondeterminism

Keywords debugging; non-determinism; MPI

1. Introduction
The path towards exascale computing involves significant
increases in the amount and type of parallelism, and ap-
plications have begun to adopt more asynchronous algo-
rithms to exploit them efficiently. The Message Passing In-
terface (MPI) is today’s workhorse to build large-scale high-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP ’17, Feb. 4–8, 2017, Austin, Texas, USA..
Copyright c⃝ 2017 ACM 978-1-4503-4493-7/17/02. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3018743.3018767

performance computing (HPC) applications. While this pro-
gramming model will remain dominant in the foreseeable fu-
ture, its usage is increasingly embracing more asynchronous
algorithms.

While asynchronous communication allows flexible com-
munication patterns and enables applications to overlap
communication with computation [20] for higher perfor-
mance, it comes at an expense: it often introduces non-
determinism in communication patterns, e.g., by waiting for
any message (e.g. MPI ANY SOURCE) to arrive and process-
ing them in any order. While this by itself is not problematic,
non-determinism is generally hard to reason about, raising
the level of difficulty in correctly implementing such algo-
rithms. Even worse, incorrect usage can often produce subtle
and hard-to-track non-deterministic bugs that intermittently
emerge during production runs, but rarely (or never) occur
in testing and debug runs.

A common cause of a non-deterministic bug is an unin-
tended message race, a condition in which two or more mes-
sage sends race to match with a message receive and at least
one of them is unintended. Such an incorrect match only oc-
curs with under a specific message arrival timing, and there-
fore they can be particularly challenging to reproduce and to
diagnose during debug runs, which typically have a different
timing behavior caused by different compilation flags, addi-
tional instrumentation or other factors. Further, timing is of-
ten determined also by external factors in MPI applications,
in particular the level of congestion on the network paths.

Unintended message races can significantly increase the
debugging cost because programmers must often run the ap-
plication many times until the races finally manifest. While
many parallel debugging tools exist for HPC, they mainly
focus on helping programmers in finding the cause of a
bug by inspecting, tracing, profiling or printing the appli-
cation’s program state once a bug has manifested. Conse-
quently, these tools are effective only when the bug is ob-
served. However, observing the bug itself, especially under
a tool’s control, is as difficult as finding the root cause of
the bug for unintended message races (More details in Sec-

89

tion 2). Further, these tools typically exhibit noticeable run-
time overhead, which distorts and thereby potentially masks
message race bugs.

In this paper, we present NINJA (Network noise INJec-
tion Agent), which injects network noise in order to expose
unintended message races more frequently and quickly to
complement existing debugging tools. The noise amounts
are carefully selected to cause delays only on certain mes-
sage sends to expose the condition akin to when the applica-
tion intermittently failed.

NINJA provides two network injection modes: system-
centric and application-centric. In the system-centric mode,
NINJA is configured with system-specific noise parameters
to emulate a congested network with no knowledge on the
application’s messaging patterns. In the application-centric
mode, NINJA first obtains the application’s own messaging
patterns from an initial run in the system-centric mode and
then uses them to determine more precise amounts of noise
and injection patterns. NINJA uses the MPI profiling inter-
face (PMPI) to inject network noise, and thus existing ap-
plications can run under NINJA without code modifications
or even without being aware of the tool’s existence. Specifi-
cally, this paper makes the following contributions:

• An analysis of unintended message races in non-
deterministic message-passing applications;

• Two novel network noise injection techniques: one
system- and application-centric approach, which use the
above analysis to uncover subtle message races;

• A prototype of NINJA that embodies these techniques;
• An empirical evaluation of the effectiveness and over-

head of NINJA on synthetic message races as well as a
real-world bug in a large sparse matrix solver.

Our evaluation on synthetic cases shows that NINJA
can help expose unintended message races frequently and
quickly. Further, our evaluation on a real-world bug in
Hypre-2.10.1 shows that NINJA can consistently expose
message races that had not been fixed (due in large part to
their rare occurrence) for over 14 years of its history, i.e.,
since the first version of Hypre 1.6.0 was released1.

2. Background
2.1 Motivational Case Study
Two scientists developing a production engineering applica-
tion in our organization engaged our research team to ask
for debugging assistance as their application intermittently
hung. They had spent about two months on the hangs in a
period of 18 months, but its intermittent nature had been
making their effort nearly fruitless. Our research team be-
gan to tackle this problem by first lightly sprinkling printf
statements into code and running it on one of our HPC clus-
1 The corrected functions, which our research team found and fixed, were
incorporated into the next version, Hypre-2.11.0.

ters. However, we found that the bug became even harder to
reproduce in our debug runs (more details in Section 3.3).

When our team found and fixed the bugs, our job submis-
sion logs showed that our team had to spend two weeks in
the period of three months, and submitted 291 jobs (10,392
compute-node hours or 433 compute-node days in total) for
diagnosing this single non-deterministic bug. We were able
to observe the hang only in 9 jobs, and wasted resources for
the remaining 282 jobs. Even when the hang was reproduced
in the 9 jobs, it took a few hours before the application got
hung. Another phenomena, which hampered our debugging
efforts, was that this bug never manifested in another clus-
ter (More details in Section 6.1).

Once we sufficiently captured the hang in debug runs,
fixing it was rather easy: it required only about ten lines
of code. The root cause was due to an unintended message
race between two communication routines within the Hypre
solver (Ver. 2.10.1) used in this application. We learned
in this investigation that debugging non-deterministic bugs
requires frequent and quick manifestations of the target bug.

2.2 Existing Approaches to Message Races
Because of its non-deterministic nature, printf debugging
is a common technique: programmers add printf state-
ments in specific places of the code to log program states
including destinations and sources of the messages being ex-
changed.

Other attractive approaches are record-and-replay [16,
20, 26], MPI deadlock detection [12] and message race de-
tection tools [19]. A record-and-replay tool records a com-
munication trace of all MPI processes. Once the tool cap-
tures an incorrect message matching in the record phase,
the tool can then repeatedly reproduce the identical incor-
rect execution, significantly facilitating debugging. However
a record-and-replay tool needs to observe untended message
matching at lease once and under tool control in order to re-
play it.

MPI deadlock and message race detection tools can iden-
tify where a deadlock or message race occurred in the code.
However, these tools also need to observe a deadlock or mes-
sage race to identify the code location. When it comes to
non-deterministic bugs, a new tool, which can make the tar-
get bug manifest itself more frequently and quickly so as to
complement other existing debugging tools, can be a signif-
icant aid.

3. Conceptualizing Message Races
In this section, we present our high-level execution model
for MPI applications in order to describe message races
in conceptual terms. Using this model, we also explain a
common phenomenon where simply applying a debugging
tool to this problem often makes it even harder to expose
this class of bugs.

90

0

1

2

3

4

5

6

7

0.535 0.54 0.545 0.55 0.555 0.56

M
P

I
ra

nk

Execution time (seconds)
Recv (tag=55) Recv (tag=6432) Recv (tag=6502) Recv (tag=7294)
Send (tag=55) Send (tag=6432) Send (tag=6502) Send (tag=7294)

0

1

2

3

4

5

6

7

0.08 0.0805 0.081 0.0815 0.082 0.0825 0.083 0.0835 0.084 0.0845 0.085

M
P

I
ra

nk

Execution time (seconds)

Recv (tag=222) Send (tag=222) Recv (tag=223) Send (tag=223) Recv (tag=224) Send (tag=224)

0

1

2

3

4

5

6

7

8.58 8.582 8.584 8.586 8.588 8.59 8.592 8.594 8.596 8.598 8.6

M
P

I
ra

nk

Execution time (seconds)

Recv (tag=1024) Send (tag=1024) Recv (tag=2048) Send (tag=2048) Recv (tag=3072) Send (tag=3072)

R
ou

ti
ne

 X
1

(t
ag

=5
5)

R
ou

ti
ne

 X
2

(t
ag

=6
43

2)

R
ou

ti
ne

 X
3

(t
ag

=5
5)

R

ou
ti

ne
 X

4
(t

ag
=6

43
2)

R
ou

ti
ne

 X
5

(t
ag

=6
50

2)

R
ou

ti
ne

 X
6

(t
ag

=7
29

4)

Figure 1. Communication segments in MCB (# of send
messages: 205)0

1

2

3

4

5

6

7

0.535 0.54 0.545 0.55 0.555 0.56

M
P

I
ra

nk

Execution time (seconds)
Recv (tag=55) Recv (tag=6432) Recv (tag=6502) Recv (tag=7294)
Send (tag=55) Send (tag=6432) Send (tag=6502) Send (tag=7294)

0

1

2

3

4

5

6

7

0.08 0.0805 0.081 0.0815 0.082 0.0825 0.083 0.0835 0.084 0.0845 0.085

M
P

I
ra

nk

Execution time (seconds)

Recv (tag=222) Send (tag=222) Recv (tag=223) Send (tag=223) Recv (tag=224) Send (tag=224)

0

1

2

3

4

5

6

7

8.58 8.582 8.584 8.586 8.588 8.59 8.592 8.594 8.596 8.598 8.6

M
P

I
ra

nk

Execution time (seconds)

Recv (tag=1024) Send (tag=1024) Recv (tag=2048) Send (tag=2048) Recv (tag=3072) Send (tag=3072)

R
ou

ti
ne

 X
7

(t
ag

=1
02

4)

R
ou

ti
ne

 X
8

(t
ag

=2
04

8)

R
ou

ti
ne

 X
10

(t

ag
=1

02
4)

R
ou

ti
ne

 X
11

(t

ag
=2

04
8)

R
ou

ti
ne

 X
12

(t

ag
=3

07
2)

R
ou

ti
ne

 X
9

(t
ag

=3
07

2)

Figure 2. Communication segments in Lulesh (# of send
messages: 131)

0

1

2

3

4

5

6

7

0.535 0.54 0.545 0.55 0.555 0.56

M
P

I
ra

nk

Execution time (seconds)
Recv (tag=55) Recv (tag=6432) Recv (tag=6502) Recv (tag=7294)
Send (tag=55) Send (tag=6432) Send (tag=6502) Send (tag=7294)

0

1

2

3

4

5

6

7

0.08 0.0805 0.081 0.0815 0.082 0.0825 0.083 0.0835 0.084 0.0845 0.085

M
P

I
ra

nk

Execution time (seconds)

Recv (tag=222) Send (tag=222) Recv (tag=223) Send (tag=223) Recv (tag=224) Send (tag=224)

0

1

2

3

4

5

6

7

8.58 8.582 8.584 8.586 8.588 8.59 8.592 8.594 8.596 8.598 8.6

M
P

I
ra

nk

Execution time (seconds)

Recv (tag=1024) Send (tag=1024) Recv (tag=2048) Send (tag=2048) Recv (tag=3072) Send (tag=3072)

R
ou

ti
ne

 X
13

(t

ag
=2

22
)

R
ou

ti
ne

 X
14

(t

ag
=2

23
)

R
ou

ti
ne

 X
15

(t

ag
=2

22
)

R
ou

ti
ne

 X
16

(t

ag
=2

23
)

R
ou

ti
ne

 X
17

(t

ag
=2

24
)

Figure 3. Communication segments in Hypre (# of send
messages: 190)

3.1 Execution Model
A majority of today’s large-scale parallel applications are
written in the Single Program, Multiple Data (SPMD)-based
message-passing paradigm. One key pattern of this paradigm
is that each MPI process repetitively executes a series of
communication routines. For example, Figures 1, 2 and 3
show this pattern in terms of receives (e.g., MPI Recv) and
sends (e.g., MPI Send) on timeline plots of two well-known
CORAL benchmark codes (MCB and Lulesh) and the Hypre
library. Here, a communication routine represents a self-
contained communication instance consisting of sends and
receives that often use the same MPI tag and communicator
for isolation.

Messages sent in a communication routine are intended
to be received by the same communication routine. In our
figures, we denote the communication routines as Routine
X1, X2 . . . X17. If isolation is guaranteed, a communication
routine can be overlapped with other communication rou-

tines for better performance. However, reasoning about this
isolation can often be difficult in particular when program
complexity is high, which can lead to extremely hard to de-
bug errors.

Figure 3 shows one such bug in Hypre: the program-
mer did not intend the messages sent in Routine X15 to
be received by Routine X13, but there was no isolation be-
tween them. In fact, the rarely occurring hang described in
Section 2.1 was caused by this unintended message match-
ing where a message sent in Routine X15 was received by
Routine X13. Because another routine, in this case, Rou-
tine X14, and other relatively intense computations occur
between Routine X13 and X15, this message race did not
normally occur. However, when the code was run under sig-
nificant network congestion, an overlapping of Routine X13

and X15 occurred. In order to prevent this, these two routines
would have needed to use proper isolation mechanisms.

3.2 Unintended Message Race Model
Figure 4-(a) generalizes our target message race problem.
Routine X consists of either multiple or none of communi-
cation routines and other computations. In the Hypre case,
for example, Routine A, X and B correspond to Routine
“X13”, “X14 and other computations” and “X15”, respec-
tively. Even if individual routines are free of bugs, the devel-
oper must also ensure that unintended message races do not
occur across different routines or different invocations of the
same routine.

One mechanism to provide the necessary isolation be-
tween Routine A and B is to use unique message tags with
respect to a communicator within each routine: matching
ID. Here, each process can receive only the messages desig-
nated by the matching ID in the routine (Condition Cmsgid).
Another mechanism is to build a unique epoch (i.e., a pe-
riod of logical time that happens before the subsequent rou-
tine) directly into a routine by means of global synchro-
nization (e.g., MPI Barrier) without in-flight messages as
shown in Figure 4-(b) (Condition Csync). Typically, the
same communication routines are called multiple times ei-
ther in an iteration or across different iterations, therefore
we must ensure that condition Csync is held whenever the
same communication routines are called.

In general, when developing MPI applications, the pro-
grammer must ensure that either condition is satisfied,
Cmsgid ∪Csync, to avoid message races for all communica-
tion routines. If there is any communication routine violating
both Cmsgid and Csync condition, i.e., Cmsgid∩Csync, then
that the communication routines is considered unsafe, and
the application can potentially encounter unintended mes-
sage races if a specific timing is created. For example, Rou-
tine X7 and X10 violate Cmsgid, while Csync is satisfied in
Lulesh. Therefore, the routines are still safe. If Csync is not
satisfied, Lulesh can encounter the same race bug as that of
Hypre’s. As scientific MPI applications become more com-

91

6Δ

P0	 P1	 P2	

X= Synchromization

(b)

P0	

X

X

X

P1	 P2	

Hang !
Crash !

(c)

Lo
ca

l n
oi

se

P0	 P1	 P2	

(d)

1

2

P0	 P1	 P2	

(e)

1

2

Δ

5Δ

P0	

X

X

X

P1	 P2	

(a)

R
ou

ti
ne

 A

R
outine X

R
ou

ti
ne

 B

Figure 4. Message race conditions in MPI applications

plex and larger, ensuring the condition, Cmsgid ∪Csync, has
been becoming increasingly challenging.

In this example, if Routine A and B are unsafe, then unin-
tended message races can happen, as shown in Figure 4-(c),
which can result in an application crash or hang. In practice,
the manifestation of unintended message races depends on
the execution time of interleaving routines (Routine X) be-
tween the two unsafe communication routines (Routine A
and B). For example, if Routine X is a computation routine
in a strong-scaling problem in which each MPI process oper-
ates on an increasingly smaller piece of data, a larger process
count leads to a proportionally shorter execution of Routine
X. Under such circumstances, message races would only be-
gin to show up at or above a certain process count. However,
the same races would not occur at small scales because Rou-
tines A and B will never be overlapped in practice as they
are separated by a larger running time of Routine X.

We refer to the difficulty in reproducing unintended races
due to a relatively large distance between unsafe routines as
well as other relevant issues (e.g., noise effects), collectively
as the separation problem.

3.3 Why Races Disappear under a Tool’s Control?
In addition to a problem in existing debugging tools de-
scribed in Section 2.2, another disadvantage of these tools is
that they tend to introduce an extra runtime overhead (node-
local noise). The occurrence of message races is highly
subject to any noise, and therefore they can disappear due
to the noise introduced by these approaches. Figure 4-(d)
illustrates this problem. If processes in Routine X send
and receive messages, then the node-local noise propagates
through this communication, and Routine A and B can be
even further separated if P2 can only transition into Routine
B after receiving a message from P0 in Routine X. Never-
theless, message 2 still can arrive at P1 earlier than message
1 if message 1 is significantly delayed (Figure 5-(a)).

In practice, introducing more node-local noise separates
the unsafe routines further, therefore making it harder to re-
produce message races because Routine X typically contains

P0	 P1	 P2	

N
et

w
or

k

no
is

e

Px	

(a) (b)

Trigger delay

Trigger delay

E
arlier m

essages
L

ater m
essages

Figure 5. (a) Noise injection can overlap; (b) Noise Trig-
gering Criteria

interleaving communications between the two unsafe rou-
tines, as shown in Figure 2 and 3. For example, if each node-
local noise unit is ∆, then the interval between the arrival of
message 1 and 2 is 5∆, as shown in Figure 4-(d). However,
if the node-local noise unit is 2∆, then the interval becomes
6∆ ,as shown in Figure 4-(e).

We refer to the difficulty in reproducing this class of races
due to the runtime overhead introduced by tools collectively
as the tool overhead problem.

4. Noise Injection Techniques
When debugging message races, it is necessary to observe
the bugs in debug runs. To assist programmers with observ-
ing the message races, we need practical approaches to the
aforementioned problems of separation and tool overhead.
Our approach is to use noise injection techniques to enable
frequent manifestation of message races, and we codified
this approach in a prototype called NINJA.

NINJA uses network noise injection techniques to con-
trol the communication behaviors of the MPI application

92

with the goal of manifesting subtle message races more
frequently. Unlike node-local noise (Figure 4-(d)), a right
amount of network noise can expose unintended message
races (Figure 5-(a)). NINJA provides two noise injection
modes: system-centric and application-centric. In system-
centric mode, NINJA induces message races by reconstruct-
ing noise signatures. In application-centric mode, NINJA
first analyses the application’s behavior to then directly en-
force the overlapping of certain communication routines.
It achieves this goal by building the application-specific
knowledge into its noise injection scheme.

4.1 System-Centric Noise-Injection Mode
When injecting network noise in the system-centric mode,
NINJA considers two important factors to maximize the
chance for an incorrect message matching to manifest itself
due to races, while limiting the application slowdown: which
MPI sends to inject noise into; and how much noise to inject.

4.1.1 Noise Triggering Criteria
To induce message races in the example shown in Figure 4-
(d) or (e), the ideal approach would be to delay message 1,
but not message 2, as illustrated in Figure 5-(a). In general,
if we delay later messages in an unsafe communication rou-
tine while not delaying earlier messages in the next unsafe
routine, we can overlap two unsafe communication routines,
thereby, inducing message races Figure 5-(b).

To implement such behavior, each MPI process manages
a virtual buffer queue (VBQ) at the user level. NINJA re-
gards MPI messages as a sequence of fixed-size chunks, i.e.,
packets, which are all funneled thought the VBQ of the MPI
process. If the number of packets in the VBQ exceeds the
configurable VBQ threshold (Ns), then NINJA injects a de-
lay to all of the subsequent sends until this congestion con-
dition is cleared. Since the buffer queue is virtually managed
by NINJA itself, NINJA does not actually buffer the packets,
but instead only keeps track of the number of packets that are
expected to be in the VBQ and triggers delays as necessary.

4.1.2 Noise Amount
The second factor is the amount of each delay that should be
injected. When the number of packets exceeds the threshold,
NINJA computes how long the subsequent messages should
wait until the VBQ is sufficiently freed up below the thresh-
old, Ns.

More precisely, when sending an MPI message, which
will be packetized into Nm packets, with the length and
threshold of VBQ being configured to be Nl and Ns respec-
tively, NINJA blocks the issuing of the send operations until
Nm packets fit into the VBQ under the VBQ threshold, i.e.,
until Nm + (Nl −Ns) packets are transmitted, as shown in
Figure 6. Finally, we estimate the delayed time it takes to
transmit N = Nm + (Nl −Ns) packets, D, which is given

Nm packets (Nm + (Nl – Ns)) packets

Ns

(Nl – Ns) packets

Nl

Physical
link

MPI processes

MPI process

MPI process

VBQ

N
IC

Packets

Packets

Packets MPI process

Message payload
(N packets)

Figure 6. To enqueue all Nm packets of the message in
the VBQ, Nm and Nl − Ns packets must be dequeued and
transmitted.

by:

D =

{
N∑

i=1

(Ps[i]/B + C)

}
× Sp (1)

where Ps[i] and B are the size of the i-th packet (the 1st
packet being at the head of the VBQ) and network bandwidth
respectively, and Sp denotes the noise scaling factor.

This algorithm is also based on our observation that the
more the system is congested and the more noisy the net-
work, the more unintended message matchings occur (de-
tailed results are in Figure 11 and 12). Actually, this queue
model described in Section 4.1.2 and 4.1.1 is similar to gen-
eral network flow controls [4, 11]: when a destination buffer
do not have enough space, the congestion control engine sus-
pends packet transmission until enough buffer space is freed
up to avoid packet losses. Therefore, one can emulate more
noisy environment by delaying more messages with lower
VBQ threshold, Ns, and by delaying messages longer by
higher noise scale factor, Sp. By using the NINJA’s system-
centric model, users can observe an unintended message
matching more frequently than ones without using NINJA.

4.2 Application-Centric Noise-Injection Mode
The system-centric mode is useful to manifest an unintended
message matching problem while minimizing overhead to
the application. However, this mode cannot guarantee that all
pairs of unsafe communication routines will be overlapped.
As described in Section 3.2, for example, the smaller the
scale is, the longer the time between two unsafe communica-
tion routines, thereby making the separation problem worse.
For a small scale at which message races have never been
observed during production runs, our system-centric noise
mode will still be unlikely to manifest the race problem.

93

0
50

100
150
200
250
300
350
400
450
500

T
im

e

Message send call (k)

Send interval

Send time (System-centric mode)

Minimum noise

Send time (Application-centric mode)

G
lo

ba
l s

yn
ch

ro
ni

za
ti

on
 (w

/o
 in

-f
li

gh
t

m
es

sa
ge

)

G
lo

ba
l s

yn
ch

ro
ni

za
ti

on
 (w

/o
 in

-f
li

gh
t

m
es

sa
ge

)

Epoch 1

Send set 1 Send set 2

Epoch 2

Send set 1

Send set 2

1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12

63
16 66 6

V1, V2{ }= 63, 16{ }

V1, V2{ }= 66, 6{ }

Epoch 1:

Epoch 2:

V1, V2{ }= 66, 16{ }

Computing
maximum

V1, V2{ }= 66, 16{ }

Send set 2 does not
need application-

centric noise

(Dm)

Dm

(Dk)

Figure 7. Example: Message send timestamps in system-centric (blue plots) and application-centric mode (red plots)

One can set a significantly large scale factor for Sp to en-
force any pairs of unsafe communication routine to be over-
lapped. However, this configuration would introduce pro-
hibitively large overhead to the application. In addition, de-
bugging an application at a smaller scale is much more pre-
ferred than doing it at large scale. Thus, NINJA also pro-
vides an alternative way to enforce an overlapping between
all pairs of unsafe communication routines.

4.2.1 Enforcing Message Races
To enforce an overlapping, NINJA provides an application-
centric mode that uses knowledge about the application’s
own communication patterns even under a debugging tool’s
control. During a run in system-centric mode, NINJA traces
and analyzes the time intervals between successive message
sends, detects unsafe communications violating both Cmsgid

and Csync, and finally dumps the analysis data at the end of
execution (if this run in system-centric mode does not hang
nor crash due to message races). During successive runs
in application-centric mode, NINJA then loads the analysis
data and uses this information to inject appropriate amounts
of noise to enforce the overlapping of each detected unsafe
communication routine.

More specifically, NINJA keeps track of injected mini-
mum noise (Dm) during the system-centric mode in its the
analysis file. If the time interval between two consecutive
sends is larger than Dm, NINJA regards the rest of the mes-
sage sends (before the next large interval is detected) as the
next distinct communication routine. In Figure 7, for exam-
ple, NINJA regards Send sets 1 and 2 each as a distinct com-
munication routine and also deems that message races have
not occurred between Send set 1 and 2. Because the time
between Send set 1 and 2 is larger than Dm, it’s not guaran-
teed that Send set 1 and 2 were overlapped during the run in
system-centric mode.

After detecting the distinct Send sets, NINJA computes
how long messages in Send set 1 should be delayed to be
able to be overlapped with Send set 2 (application-centric
noise amount). More precisely, NINJA computes the amount
of application-centric noise for Send set i, Vi, as follows:

Vi =

{mi+1−1∑

k=mi

Dk

}
× Sa (2)

where Dk is the time interval between send k + 1 and
k, and mi denotes the first message of Send set i, and
finally Sa denotes an application-centric noise scaling factor.
NINJA computes Vi at the end of each epoch. An epoch
consists of a set of routines detected by our epoch detection
algorithm. Messages sent in an epoch are solely received
within the same epoch. As such, they cannot cross the epoch
boundary and be received within the next epoch. Figure 7
shows an example where V1 and V2 are computed as 63 and
16 respectively in Epoch 1, and 66 and 6 in Epoch 2.

For the epoch detection, each MPI process counts the
number of sends and receives. Whenever a global synchro-
nization is called by the application, all of the processes call
MPI Allreduce to compute the global sum of the number
of sends and receives. If the send count is equal to the re-
ceive count, NINJA infers that the application progressed
into the next epoch because the global synchronization holds
the condition Csync, i.e., synchronization without in-flight
messages. Whenever an epoch ends, NINJA updates Vi if
new Vi is larger than old Vi to compute the maximum. By
updating the maximum of Vi, NINJA ensures that it enforces
an overlapping between Send set i and i+ 1 with arbitrary i
in every epoch. In Figure 7, V1 and V2 become 66 and 16 at
the end of Epoch 1.

We note that NINJA does not inject application-centric
noise to the last Send set in each epoch, to avoid unnecessary
noise injection: Message races will never occur between two

94

MPI_Init	

MPI process

MPI_Test	

MPI_Test	

PMPI_Start	

ts

10: int MPI_Isend (…) {	
11: if (is_delayed) {	
12: PMPI_Send_init(…);	
13: /* Enqueue request for Send thread 	
14: with timer ts */	
15: } else {	
16: PMPI_Isend(…);	
17: }	
18: }	
 :	
30: int MPI_Wait (…) {	
31: while (!flag) MPI_Test(…);	
32: }	
 :	
50: int MPI_Collective (…) {	
51: PMPI_Icollective(…, &reqest);	
52: MPI_Wait(&request, …);	
53: }	
	

Main
thread

Send
thread

(1)

(2)

(3)

(4) (5)

(6)

MPI_Isend	

MPI_Isend	
(PMPI_Send_init)	

t’s

Figure 8. NINJA implementation

Send sets separated by a global synchronization. Figure 7
shows the example where NINJA injects application-centric
noise by 66 time units to only Send set 1 when the VBQ
gets congested at the third message. Because an application
may have multiple unsafe communication routines, NINJA
separately computes Vi for each message ID, i.e., a pair of
tag and communicator. In addition, since each process in-
dependently computes application-centric noise, computing
the application-centric noise amount minimally affects the
application’s scalability.

The analysis file also includes a list of message IDs vio-
lating both Cmsgid and Csync, and can be used for validating
correctness of MPI programs.

5. Implementation
NINJA is implemented on top of the PMPI profiling inter-
face, and thus can inject noise into the target application
without requiring any modification to its source. In the fol-
lowing, we describe the implementation details of NINJA.

5.1 Send-dedicated thread
To inject network noise, we use a send-dedicated thread,
one per MPI process (shown in Figure 8). In MPI Init,
each MPI process spawns this send-dedicated thread (send
thread) as shown in (1) in Figure 8. The send thread is
the actual initiator of the send calls for all delayed mes-
sages. When the application thread calls MPI Isend, the
main thread checks whether this message should be de-
layed based on the VBQ threshold, Ns. If the VBQ does
not reach the threshold, the application thread simply calls
PMPI Isend ((2) in Figure 8). Otherwise, the application
thread calls PMPI Send init, computes the amount of de-
lay for either system- or application-centric noise, and then
requests the send thread to call PMPI Start at a scheduled
send time, ts ((3) in Figure 8). Meanwhile, the send thread
periodically checks the presence of a delayed send request. If
the send thread finds any delayed send request whose sched-
uled send time (ts) is smaller than the current time, the send
thread calls PMPI Start for this message. After that, when

the application thread calls one of the matching functions
(e.g., MPI Test) before the send thread calls MPI Start,
NINJA returns flag = 0 ((5) in Figure 8). If the match-
ing function call is after MPI Start, NINJA simply calls
PMPI Test ((6) in Figure 8). However, in most of MPI im-
plementations, if the message payload size is less than the
eager limit, MPI Test immediately returns flag = 1 before
the message is delivered to the destination. To implement
this behavior, if the message payload size is less than the ea-
ger limit, the application thread copies the message payload
data to its buffer space on MPI Isend and returns flag = 1
even before the send thread calls PMPI Start.

MPI guarantees that if an MPI process sends two mes-
sages in succession to the same destination and the two mes-
sages match the same MPI receive at the destination MPI
process, then two messages are ordered, non-overtaking. Our
network noise injector also abides by the non-overtaking
rule. MPI also ensures that point-to-point communications
within a collective call do not race with other communica-
tions. Therefore, we do not inject network noise to MPI col-
lective calls.

5.2 Modification to Blocking Operations
In NINJA, two threads (application and send threads)
concurrently call MPI functions. Thus, NINJA re-
quires the underlying MPI implementation to support
MPI THREAD SERIALIZED or MPI THREAD MULTIPLE.
In an MPI THREAD SERIALIZED mode, NINJA locks and
unlocks a mutex before and after each PMPI function call.

However, a simplistic approach can cause a deadlock. For
example, consider a condition:

• An application thread of MPI process A locks a mutex in
order to call PMPI Wait to wait for Message B from MPI
process B;

• A send thread of MPI process A has a delayed send
request (Message A);

• Message B is sent after MPI process B receives Mes-
sage A.

Under this condition, a deadlock occurs because a mutex is
acquired by the application thread of MPI process A and the
send thread is unable to grab the mutex to send Message A.

To avoid a deadlock, we re-implemented the MPI Wait
call family (i.e., MPI Wait, MPI Waitany, MPI Waitsome
and MPI Waitall) by using the corresponding PMPI Test
calls (i.e., PMPI Test, PMPI Testall, PMPI Testany and
PMPI Testsome). For example, the application thread peri-
odically locks and unlocks the mutex, and the send thread
can eventually acquire the lock and send Message A (Line
30-32 in Figure 8). Similarly, we also re-implement block-
ing collective calls by using the corresponding non-blocking
collective operations (Line 50-53 in Figure 8).

95

Table 1. Node specification of Cab and Catalyst
Cab Catalyst

Nodes 1,200 batch nodes 304 batch nodes
CPU 2.6 GHz Intel Xeon E5-2670 2.4 GHz Intel Xeon E5-2695 v2

(16 cores per node) (24 cores per node)
Memory 32 GB 128 GB

HCA InfiniBand QDR4X (QLogic) InfiniBand QDR4X (QLogic) x2

Send A	
Recv A	

Send B	
Recv B	

Send A	
Allreduce A	

Recv A	

Send B	
Allreduce B	

Recv B	

X X X X X X

Send A (tag=222)	
Allreduce A	

Recv A (tag=222)	

Send B (tag=222)	
Allreduce B	

Recv B (tag=222)	

Send X (tag=223)	
Recv X (tag=223)	

(a) Case 1 (b) Case 2 (c) Case 3

P0	 P1	 P2	 P0	 P1	 P2	 P0	 P1	 P2	

Barrier	 Barrier	

R
ou

ti
ne

 A

R
ou

ti
ne

 X

R
ou

ti
ne

 B

Figure 9. Case 1 and 2: Synthetic cases to capture common
unintended message races. Case 3: Hypre communication
pattern

6. Evaluation
In this section, we present our evaluation results showing
the effectiveness and performance overhead of our injec-
tion techniques. Our evaluation is conducted on two large
systems sited at Lawrence Livermore National Laboratory
(LLNL): Cab and Catalyst. The main differences between
two systems are: 1) Cab is larger in terms of the number of
compute nodes in the machine and 2) as a production system
it is more heavily utilized with more users than Catalyst. In
terms of the capabilities within each node, however, Cata-
lyst contains a higher number of compute cores than Cab
(24 versus 16), and one additional InfiniBand rail that is only
used for system management purposes. Taken together, ap-
plications are more subject to network congestion when they
run on Cab than on Catalyst. For all our evaluation, we used
MVAPICH-2.1 as the underlying MPI implementation.

6.1 System-Centric Mode
The main purpose of the system-centric mode is to inject net-
work noise to emulate a highly congested environment for
the application. Even on a quiet network system, therefore,
this mode can increase the manifestation rate of unintended
message races. In contrast to the application-centric mode,
the system-centric mode can achieve this without obtaining
the application’s messaging patterns.

6.1.1 Synthetic Benchmarks For Unintended Races
To evaluate the effectiveness we created two synthetic cases
capturing common race conditions (Case 1 and 2), as shown
in Figure 9.

In Case 1, each process first sends messages to a ran-
domly selected destination process (Send A), receives the
messages from the random senders (Recv A), and then per-

P0: Send to P1 and P2
P1: Send to P0
P2: Send to P0 and P1

P0: {2, 2, 1}
P1: {2, 2, 1}
P2: {2, 2, 1}

Set flags Reduction with sum

P0: {0, 1, 1}
P1: {1, 0, 0}
P2: {1, 1, 0}

Figure 10. Typical communication patterns needed to de-
termine the exact number of messages to receive at runtime

forms a computation followed by the same random sends
and receives, i.e., Send B and Recv B. Then, each pro-
cess cycles through this communications and computations
for the configurable number of iterations. In Case 2, each
process performs the same random sends and receives as
Case 1, but this time all processes are synchronized with
MPI Allreduce after the random sends. In fact, this cap-
tures a common communication pattern that can emerge
when each process does not know exactly from which other
process(es) the messages will be sent to it. In this case, af-
ter sending messages (Send A), each process fills in the send
array by setting the index corresponding to each destination
rank, and calls MPI Allreduce with MPI SUM to compute
how many messages should be received. Then, each process
calls wild-card receives with MPI ANY SOURCE (Figure 10).
This case is created to evaluate the effectiveness of NINJA
when the target application is being under a debugging tool’s
control and hence is subject to the tool overhead problem de-
scribed in Section 3.3. Because processes are synchronized
after Send A, the tool’s overhead introduced at Send A can
propagate across all of the processes. Unlike Cass 1, Case 2
can decrease the frequency of exposing unintended message
races.

In the experiments for manifestation of message races,
we evaluate the manifestation of message races at both small
and large scales. However, we only show results at a small
scale, 64 processes distributed across 4 compute nodes, be-
cause of the following reasons. First, the results are same
between small and large scales. Second, if we use a higher
number of processes, Routine A can become more load-
imbalanced, and this can cause unintended message races
between Routine A and B to occur more frequently at large
scale. Message races at large scale is more easy to appear
than ones at small scale. Third, when debugging unintended
message races, it is highly desired to be able to observe the
races at small scale, as debugging is much easier and more
cost-effective. In summary, we desire to evaluate the effec-
tiveness of NINJA at small scales in more difficult and chal-
lenging scenarios to NINJA. We use 3.14 GB/s, 0.25 µsec
and 1 for B, C and Sp to emulate a congested environment
in system-centric mode.

6.1.2 System-Centric (S-Centric) Mode
Figures 11 and 12 show the number of iterations executed
until an incorrect match occurs due to unintended message
races in Case 1 and 2, respectively (a message sent in Rou-

96

Figure 11. Case 1: # of iterations ex-
ecuted until an incorrect matching ap-
pears (Routine X = 1 msec computa-
tion; Max iteration = 10,000)

Figure 12. Case 2: # of iterations ex-
ecuted until an incorrect matching ap-
pears (Routine X does nothing; Max
iteration = 10,000)

Figure 13. Case 2: # of iterations ex-
ecuted until an incorrect matching ap-
pears with 10 usec tool overhead in
Cab (Routine X does nothing; Max it-
eration = 1,000)

tine B is received in Routine A). Here, we configure the max-
imum number of iterations to be 10,000.

Then, we run this benchmark 100 times and plot the
iteration-count distributions as show in these figures. We add
1 msec computation in Routine X for Case 1 in order to emu-
late the phenomena described in Section 2.1, i.e., to create an
scenario where unintended message races frequently mani-
fest themselves in a congested network environment (Cab),
but not in a quiet environment (Catalyst). As shown in the
both figures, the incorrect message matching occurs more
frequently in Cab while not appearing as easily in Catalyst.
With NINJA in system-centric mode, however, we can fre-
quently manifest the incorrect matching problem even on
Catalyst with an iteration-count distribution similar to that
of the experiments on Cab.

With NINJA, we also observe that the incorrect match-
ing occurs in a few iterations. This is important because an
HPC application can spend a large amount of time per it-
eration. The quicker the unintended message race becomes
manifested, the more a programmer’s productivity will in-
crease. Our evaluation suggests that NINJA in system-centric
mode not only can allow programmers to observe the bugs
more frequently, but also more quickly, compared to the runs
without it.

6.2 Application-Centric (A-Centric) Mode
In this evaluation, we first run our synthetic benchmarks in
system-centric mode. For the cases where we cannot observe
unintended message races, we use the application-centric
mode by using an analysis file generated from the system-
centric mode. We set the application-centric scaling factor,
Sa to 1.2.

6.2.1 Overcoming Tool Overhead Problem
First, we evaluate how effectively application-centric noise
can expose incorrect message matching when an amount of
node-local noise akin to a debugging tool’s overhead is in-
troduced. We choose the overhead amount assuming that the
programmer used printf statements to output necessary de-

bug information after send, receive and matching functions
complete. Thus, we add fixed 10 µsec overhead after these
MPI function calls to Case 2.

Figure 13 shows the results on Cab. While message race
bugs manifest themselves in the absence of tool overhead
as shown in Figure 12, the same message race bugs are
never captured due to the 10 µsec of tool overhead. Even in
system-centric mode, the message race bugs rarely manifest
themselves. However, in application-centric mode, we ob-
serve that NINJA can still frequently uncover the unintended
message races. With application-centric noise, we also ob-
serve that the message race bugs typically occur at the first
iteration in most of the runs. We also confirmed that the same
results are achieved with even larger amounts of tool over-
heads: 100 µsec and 1 msec.

6.2.2 Noise Injection for Separation Problem
We also evaluate NINJA on the separation problem described
in Section 3.2. For this evaluation, we add 1 msec computa-
tion in Routine X. Figure 14 shows the results. Similarly to
Figure 13, the application-centric mode can efficiently un-
cover the message race bugs even if we introduce a far worse
separation problem than the original condition. Because the
application-centric mode enforces an overlapping between
two unsafe communication routines by tailoring the delays
to the application, this mode can even more frequently un-
cover the unintended message races within the application.

6.2.3 Real-World Bug in Hypre 2.10.1
Finally, we apply NINJA to a known bug in Hypre-2.10.1.
Hypre is a library for solving sparse linear systems of equa-
tions for MPI applications. A non-deterministic message
race bug exists in one solver that computes a sparse ap-
proximate inverse pre-conditioner. We use an example code
of the solver, ex5.c, in the Hypre-2.10.1 package. Case 3
in Figure 9 depicts the two unsafe communication routines
that are used in this solver based on Figure 3. Although this
solver calls a global synchronization (Allreduce A) before
receive calls (Recv A), an unintended message matching can

97

Figure 14. Case 2: # of iterations
executed until an incorrect message
matching occurs in Cab (Routine X =
1 msec computation; Max iteration =
1,000)

Figure 15. Case 3: # of iterations
executed until an incorrect message
matching appears (Max iteration =
100)

0

0.005

0.01

0.015

0.02

0.025

0 1 2 3 4 5 6 7 8 9 10

S
en

d
ti

m
e

(s
ec

on
ds

)

Message send calls

Systen-centric mode

Application-centric mode

Figure 16. Case 3: Send time in
system-centric vs. application-centric
mode

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000 2500 3000

It
er

at
io

n
ti

m
e

(s
ec

on
ds

)

The number of MPI processes

w/ NINJA (Random: 90%)
w/ NINJA (Random: 50%)
w/ NINJA (Random: 10%)
w/ NINJA (A-centric)
w/ NINJA (S-centric)
w/o NINJA

Figure 17. A single iteration time

still occur between Routine A and B because Csync is not
held. However, this race infrequently occurs in practice be-
cause there exist several communication and computations
routines, significantly separating these two unsafe commu-
nication routines. Because of this pattern, the message race
bugs in Hypre have not been fixed during the 14 years of its
history. Figure 15 shows the results. Similarly to the results
in Figure 13 and 14, NINJA can successfully uncover this
race at small scale in application-centric mode.

Figure 16 shows the actual send time profile of one of the
MPI processes, contrasting system- and application-centric
modes. The first set of sends belongs to Routine A, and the
second set of sends to Routine B. We normalize the send
time of these modes such that the time stamp of the first
send is 0. As shown in this figure, NINJA injects sufficient
amounts of delay to overlap Routine A with B.

6.3 NINJA Performance Overhead
NINJA can expose unintended message races by injecting
network noise. One could attempt to achieve the same ob-
jective by injecting large amounts of noise to randomly se-
lected messages in order to overlap all pairs of unsafe com-
munication routines. However, the naive random approach
can introduce a large runtime overhead to applications with
no clear notion of target communication patterns. In con-

trast, NINJA’s targeted injection schemes do not incur high
overheads.

Figure 17 shows the average iteration time of running
the Hypre code with or without NINJA (Random, System-
centric and Application-centric noise) as shown in Table 2.
We can observe that a random noise injection scheme sig-
nificantly impacts the code’s running time. On the other
hand, the application-centric mode injects noise to only un-
safe communication routines with noise amount just good
enough to expose a race. This limits the performance impact
to the application. Further, the system-centric mode only em-
ulates a congested network environment with very small net-
work noise, and thus its overhead is even smaller to the point
where it is negligible. Although the system-centric mode
cannot provide a guarantee to overlap all pairs of unsafe
communicating routines, this mode is useful if one wants to
test a large number of codes with bare-minimum overhead
for message races.

7. Related Work
Debugging non-deterministic bugs is a challenging task,
since these bugs can manifest themselves in production runs,
but may disappear in debugging runs. With trends towards
asynchronous communications with wild-card receives, MPI
applications are becoming increasingly complex and non-
deterministic. Debugging tools are critical to observing,
finding and fixing bugs, but most of the exiting debugging
tools cannot cope well with unintended message races as
they cannot help much if the bugs do not occur under their
control.

MPI formal verifiers such as ISP [24] and DAMPI [25]
explore all possible message-receive patterns so that the
tools can eventually hit a target bug. However, these tools are
not practical for large-scale applications because they need
to run for a significantly large number of iterations to exam-
ine all possible message interleavings until a message race is
hit. In contrast, NINJA prioritizes examining communication
patterns for overlapping two unsafe communication routines

98

Table 2. NINJA noise trigger, noise amount and target message ID
Random noise System-centric Application-centric

Noise trigger 90, 50, 10% of messages Method described in Section 4.1.1 Method described in Section 4.1.1
Noise amount Iteration time Formula 1 (in Section 4.1.2) Formula 2 (in Section 4.2.1)

Target matching ID All All Only matching ID in unsafe communication routines (Section 4.2.1)

so that the unintended message races can manifest within a
few iterations, which is a more practical solution for large-
scale applications.

Record-and-replay is an attractive approach that can ease
the efforts needed to debug non-deterministic bugs, as the
tool can repeatedly reproduce incorrect message matching
once it observes and records this misbehavior. Mainly, two
common approaches, data-replay and order-replay, exist:
Data-replay [2, 3, 17] records all the received messages in-
cluding the message receive order and payloads. With data-
replay, programmers can replay the buggy behavior with
a single MPI process. An alternative approach is order-
replay [14–16, 20]. Order-replay only records message-
receive order. Although order-replay requires programmers
to run the application at the identical number of process
count for replay as the record run, the approach can sig-
nificantly reduce tool overhead. However, both approaches
can only deterministically replay incorrect message match-
ing only when the unintended message races manifest them-
selves during the record phase. By contrast, NINJA can sig-
nificantly help exposing these errors even with the recording
overhead. Hence, NINJA complements existing record-and-
replay approaches.

There are several data race detection techniques in
shared-memory [6, 18, 21, 22]. The lockset algorithm
in Eraser [21] and Active-testing [18] analyzes mutex-
lock/unlock behaviors. State-of-the-art data-race detectors
such as FastTrack [9] and ThreadSanitizer [22] exploit
happens-before relations around the lock/unlock concept.
However, techniques to analyze and control schedules to un-
cover unintended races are fundamentally different between
the message-passing and shared-memory paradigms. Events
in shared-memory, such as memory reads/writes, occur in a
single-memory space, whereas message sends/receives oc-
cur in distributed-memory spaces. Because of these differ-
ences, data-race detection techniques cannot be directly ap-
plied to message races. Delay-bounded scheduling explores
possible task/thread schedules until buggy behaviors are hit.
However, simply delaying MPI processes using such a tech-
nique would have a similar effect as injecting node-local
noise. Node-local noise does not always work as described
in Section 3.3. Instead of node-local noise, NINJA employs
a novel network noise injection technique to the message-
passing paradigm. To the best of our knowledge, no data-
race analysis technique delays memory accesses at the level
of channel-to-memory itself.

There exists a strong body of work on the effects of
system and network noise [1, 7, 8, 13, 23]. Ferreira et al. [8]

developed a noise injection functionality at the OS level,
and other works [1, 7, 23] inject noise at the user level.
However, these approaches are only capable of injecting OS
jitters, i.e., node-local system noise. To adequately delay
message sends for our purposes, network noise is necessary.
Hoefler et al. [13] investigated the impact of network noise
to the application’s performance by using a simulator. In
contrast, we developed a noise injection tool using PMPI for
debugging message race bugs. To the best of our knowledge,
our work (the NINJA network-noise injection tool) is the
first application of network noise to uncover correctness
problems in MPI applications.

8. Conclusions
An ability to observe non-deterministic bugs is the critical
prerequisite to finding and fixing them. To assist in this, we
developed a novel noise injection technique (NINJA) that
can uncover subtle and untended message races based on
comprehensive analysis on non-deterministic MPI applica-
tions. NINJA injects network noise into the application exe-
cution in order to expose message race bugs more frequently
and quickly during debugging runs. Our evaluation showed
that NINJA is highly effective to expose bugs in representa-
tive synthetic benchmark codes as well as a real-world bug
within Hypre, one of the mostly widely used sparse matrix
solver libraries.

NINJA has a promising future to support programming
models beyond MPI, which include tasking models. Because
non-deterministic bugs often occurs as a function of spe-
cific timings of parallel interaction, we believe that our ap-
proach can be extended and generalized for other program-
ming models. Indeed, that is a significant part of our future
direction.

Acknowledgments
This work was performed under the auspices of the U.S.
Department of Energy by LLNL under contract DE-AC52-
07NA27344 (LLNL-CONF-699343).

References
[1] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. The in-

fluence of operating systems on the performance of collective
operations at extreme scale. In Cluster Computing, 2006 IEEE
International Conference on, pages 1–12, Sept 2006. .

[2] A. Bouteiller, G. Bosilca, and J. Dongarra. Retrospect: De-
terministic Replay of MPI Applications for Interactive Dis-
tributed Debugging. In F. Cappello, T. Herault, and J. Don-
garra, editors, Recent Advances in Parallel Virtual Machine

99

and Message Passing Interface, volume 4757 of Lecture Notes
in Computer Science, pages 297–306. Springer Berlin Hei-
delberg, 2007. ISBN 978-3-540-75415-2. . URL http:
//dx.doi.org/10.1007/978-3-540-75416-9_41.

[3] C. Clemencon, J. Fritscher, M. Meehan, and R. Ruhl. An
Implementation of Race Detection and Deterministic Replay
with MPI. In EURO-PAR ’95 Parallel Processing, volume
966 of Lecture Notes in Computer Science, pages 155–166.
Springer Berlin Heidelberg, 1995. ISBN 978-3-540-60247-7.
. URL http://dx.doi.org/10.1007/BFb0020462.

[4] D. Comer. Internetworking with TCP/IP: Principles, Pro-
tocols, and Architecture. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1988. ISBN 0-13-470154-2.

[5] CORAL. Collaboration of Oak Ridge, Argonne, and
Livermore benchmark codes. https://asc.llnl.gov/
CORAL-benchmarks.

[6] M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded
scheduling. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’11, pages 411–422, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0490-0. . URL http:
//doi.acm.org/10.1145/1926385.1926432.

[7] C. Engelmann. Investigating operating system noise
in extreme-scale high-performance computing sys-
tems using simulation. In Proceedings of the
http://www.iasted.org/conferences/home-795.html 11th

IASTED International Conference on Parallel and Dis-
tributed Computing and Networks (PDCN) 2013, Innsbruck,
Austria, Feb. 11-13, 2013. http://www.actapress.comACTA
Press, Calgary, AB, Canada. ISBN 978-0-88986-943-1.
. URL http://www.christian-engelmann.info/
publications/engelmann12investigating.pdf.

[8] K. B. Ferreira, P. Bridges, and R. Brightwell. Characteriz-
ing application sensitivity to os interference using kernel-level
noise injection. In High Performance Computing, Networking,
Storage and Analysis, 2008. SC 2008. International Confer-
ence for, pages 1–12, Nov 2008. .

[9] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise
dynamic race detection. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’09, pages 121–133, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-392-1. . URL http:
//doi.acm.org/10.1145/1542476.1542490.

[10] M. P. Forum. MPI: A Message-Passing Interface Standard.
Technical report, Knoxville, TN, USA, 1994. URL http:
//www.mpi-forum.org/.

[11] M. Gusat, D. Craddock, W. Denzel, T. Engbersen, N. Ni,
G. Pfister, W. Rooney, and J. Duato. Congestion control
in infiniband networks. In High Performance Interconnects,
2005. Proceedings. 13th Symposium on, pages 158–159, Aug
2005. .

[12] T. Hilbrich, J. Protze, M. Schulz, B. R. de Supinski, and M. S.
Müller. Runtime error detection with must: Advances in dead-
lock detection. In Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 30:1–30:11, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press. ISBN 978-1-

4673-0804-5. URL http://dl.acm.org/citation.cfm?
id=2388996.2389037.

[13] T. Hoefler, T. Schneider, and A. Lumsdaine. The impact
of network noise at large-scale communication performance.
In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, pages 1–8, May 2009. .

[14] J. C. d. Kergommeaux, M. Ronsse, and K. D. Bosschere.
MPL*: Efficient Record/Play of Nondeterministic Features
of Message Passing Libraries. In Proceedings of the 6th
European PVM/MPI Users’ Group Meeting on Recent Ad-
vances in Parallel Virtual Machine and Message Passing In-
terface, pages 141–148, London, UK, UK, 1999. Springer-
Verlag. ISBN 3-540-66549-8. URL http://dl.acm.org/
citation.cfm?id=648136.746462.

[15] D. Kranzlmüller and J. Volkert. NOPE: A Nondeterminis-
tic Program Evaluator. In P. Zinterhof, M. Vajteršic, and
A. Uhl, editors, Parallel Computation, volume 1557 of Lec-
ture Notes in Computer Science, pages 490–499. Springer
Berlin Heidelberg, 1999. ISBN 978-3-540-65641-8. . URL
http://dx.doi.org/10.1007/3-540-49164-3_47.

[16] D. Kranzlmüller, C. Schaubschläger, and J. Volkert. An In-
tegrated Record & Replay Mechanism for Nondeterministic
Message Passing Programs. In Recent Advances in Paral-
lel Virtual Machine and Message Passing Interface, volume
2131 of Lecture Notes in Computer Science, pages 192–200.
Springer Berlin Heidelberg, 2001. ISBN 978-3-540-42609-7.
. URL http://dx.doi.org/10.1007/3-540-45417-9_
28.

[17] R. H. B. Netzer and B. P. Miller. Optimal Tracing and Replay
for Debugging Message-passing Parallel Programs. In Pro-
ceedings of the 1992 ACM/IEEE Conference on Supercom-
puting, Supercomputing ’92, pages 502–511, Los Alamitos,
CA, USA, 1992. IEEE Computer Society Press. ISBN 0-
8186-2630-5. URL http://dl.acm.org/citation.cfm?
id=147877.148058.

[18] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu. Efficient
data race detection for distributed memory parallel programs.
In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC ’11, pages 51:1–51:12, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0771-0. . URL http://doi.acm.org/
10.1145/2063384.2063452.

[19] M.-Y. Park, S. J. Shim, Y.-K. Jun, and H.-R. Park. MPIRace-
Check: Detection of Message Races in MPI Programs, pages
322–333. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007. ISBN 978-3-540-72360-8. . URL http://dx.doi.
org/10.1007/978-3-540-72360-8_28.

[20] K. Sato, D. H. Ahn, I. Laguna, G. L. Lee, and M. Schulz.
Clock delta compression for scalable order-replay of non-
deterministic parallel applications. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’15, pages 62:1–62:12,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3723-
6. . URL http://doi.acm.org/10.1145/2807591.
2807642.

[21] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A dynamic data race detector for multi-

100

threaded programs. ACM Trans. Comput. Syst., 15(4):391–
411, Nov. 1997. ISSN 0734-2071. . URL http://doi.acm.
org/10.1145/265924.265927.

[22] K. Serebryany and T. Iskhodzhanov. Threadsanitizer: Data
race detection in practice. In Proceedings of the Workshop on
Binary Instrumentation and Applications, WBIA ’09, pages
62–71, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-793-6. . URL http://doi.acm.org/10.1145/
1791194.1791203.

[23] G. Shipman, P. M., Cormick, K. Pedretti, S. Olivier, K. B.
Ferreira, R. Sankaran, S. Treichler, A. Aiken, and M. Bauer.
Analysis of application sensitivity to system performance
variability in a dynamic task based runtime. In The Workshop
on Runtime Systems for Extreme Scale Programming Models
and Architectures, 2015.

[24] A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M.
Kirby, and R. Thakur. Formal verification of practical mpi
programs. In Proceedings of the 14th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming,

PPoPP ’09, pages 261–270, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-397-6. . URL http://doi.acm.
org/10.1145/1504176.1504214.

[25] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R. d.
Supinski, M. Schulz, and G. Bronevetsky. A scalable and
distributed dynamic formal verifier for mpi programs. In
Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and
Analysis, SC ’10, pages 1–10, Washington, DC, USA, 2010.
IEEE Computer Society. ISBN 978-1-4244-7559-9. . URL
http://dx.doi.org/10.1109/SC.2010.7.

[26] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng, Z. Zhang,
and G. Voelker. Mpiwiz: Subgroup reproducible replay of
mpi applications. In Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’09, pages 251–260, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-397-6. . URL http://doi.acm.
org/10.1145/1504176.1504213.

101

