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ABSTRACT
The ability to record and replay program execution helps
significantly in debugging non-deterministic MPI applica-
tions by reproducing message-receive orders. However, the
large amount of data that traditional record-and-reply tech-
niques record precludes its practical applicability to mas-
sively parallel applications. In this paper, we propose a new
compression algorithm, Clock Delta Compression (CDC),
for scalable record and replay of non-deterministic MPI ap-
plications. CDC defines a reference order of message re-
ceives based on a totally ordered relation using Lamport
clocks, and only records the differences between this refer-
ence logical-clock order and an observed order. Our evalu-
ation shows that CDC significantly reduces the record data
size. For example, when we apply CDC to Monte Carlo par-
ticle transport Benchmark (MCB), which represents com-
mon non-deterministic communication patterns, CDC re-
duces the record size by approximately two orders of magni-
tude compared to traditional techniques and incurs between
13.1% and 25.5% of runtime overhead.

CCS Concepts
•Software and its engineering → Software testing
and debugging; Ultra-large-scale systems; •Information
systems → Data compression; •Theory of computation
→ Parallel computing models;
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1. INTRODUCTION
Debugging massively parallel applications remains a

highly challenging task. With trends towards larger and
more complex supercomputers [17, 23, 18], remarkably in-
creasing degrees of parallelism, more parallelism options
(e.g., heterogeneity), and emerging programming models,
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applications gain higher performance and scalability by us-
ing more asynchronous algorithms. However, they come at a
productivity cost: they introduce non-determinism in paral-
lel program execution—i.e., the applications do not produce
the same output in different runs—and this makes debug-
ging even a greater challenge.

A particularly well-known source of non-determinism at
large scale is the message-passing interface (MPI) [10]. As
network and system noise can affect the order of received
messages [12], applications can take different computation
paths depending on the order of the received messages. This
complicates debugging since computation paths and associ-
ated computational results may vary between the original
run (where a bug manifested itself) and the debugged runs.

Record-and-replay tools are promising solutions to elimi-
nate non-determinism in MPI applications. When an appli-
cation executes, this approach records the execution of each
MPI process as trace data, which may include payloads of
exchanged messages as well as the order of the message re-
ceives. Then, during debugging, a replay mechanism uses
these recorded traces to ensure that every MPI process ob-
serves the same message exchanges as the recorded run.

In record-and-replay, there exist three common ap-
proaches: (1) all the received messages, i.e., both message
payloads and the order, are recorded in each process, also
known as data-replay [21, 6, 2]; (2) only the order of the re-
ceived messages is recorded, also known as order-replay [13,
15, 14]; and (3) hybrid approaches which combine data- and
order-replay [28]. While these record-and-replay approaches
significantly help in debugging non-deterministic parallel ap-
plications, they record a large amount of data, which limits
their practical use at extreme scale.

Most high-end computing systems make use of a parallel
file system for storage, thus the performance of any record-
and-replay technique is ultimately limited by how efficiently
recorded data can be placed in this storage. One can con-
ceive a more scalable approach by storing the data in node-
local storage (e.g., ramdisk), but this is a highly limited
space (e.g., a typical application uses over 90% of memory)
which can quickly run out. Therefore, a recording approach
that requires a minimal storage footprint is highly valuable
in scaling a record-and-replay tool.

In this paper, we propose a storage-efficient, low-overhead
recording scheme called Clock Delta Compression (CDC)
that dramatically reduces the size of the recorded data for
scalable order-replay. CDC defines a reference logical-clock
order of message receives based on a totally ordered relation
using Lamport clocks[16] and only records the differences



between this reference logical-clock order and an observed
order. This builds on the observation that the reference
logical-clock orders in each MPI rank are very similar to ac-
tual observed orders. Recording only the order differences
is also highly compressible, further reducing the storage use.
In addition, CDC reduces recording performance overhead
by using asynchronous recording via a dedicated thread. We
use the MPI profiling interface (PMPI) to intercept MPI
calls and piggyback Lamport timestamps. In contrast to
previous approaches that use dynamic instrumentation to
intercept MPI calls [28], our scheme incurs substantially less
application slowdown and provides higher portability. More
specifically, this paper makes the following contributions:

• A highly scalable, low-overhead recording scheme for
order-replay to mitigate the harmful effects of non-
determinism in MPI applications;

• A detailed explanation of the CDC mechanisms and
algorithm that significantly reduce the size of the
recorded data;

• A correctness proof of the CDC algorithm as well as
the subsequent replay phase that uses the CDC-based
recording scheme;

• A quantitative performance evaluation of our order-
replay approach compared to other approaches.

Our performance evaluation on MCB, a Monte Carlo
particle transport benchmark (from the CORAL bench-
mark suite [1]) featuring a common asynchronous, non-
deterministic communication pattern, shows that CDC min-
imally slows down the application at large scale and uses a
compact storage footprint. For example, to record a 24-
hour MCB simulation at 3,072 MPI processes, our proto-
type slows down the execution as low as 14.2% and limits
the trace data as little as 500 MB per compute node. The
storage efficiency is largely attributed to the compression
algorithm. Especially, the CDC compression rate is 44.4×
higher than one without compression, and 5.7× higher than
gzip [8], which is a commonly used general-purpose file com-
pression technique.

2. MOTIVATIONAL CASES
Reproducibility, the ability to repeat program executions

with the same numerical result or code behavior, is highly
desirable for debugging applications, including (or partic-
ularly) MPI applications running at large scale. But there
exist many MPI features that can prevent them from achiev-
ing this ability. For instance, wild-card parameters such as
MPI_ANY_SOURCE allow a receive to be matched with a mes-
sage sent by any MPI rank, and waiting and testing receive
requests (e.g., MPI_Waitany, MPI_Waitsome, MPI_Testany

and MPI_Testsome) can also allow receives to be matched
by any subset of MPI ranks out of all waiting and test-
ing receive requests. While these MPI functions enable
asynchronous algorithms, they can vary the application’s
code behavior and numerical results. More applications are
adopting asynchronous algorithms to achieve high scalabil-
ity, and this presents significant challenges to debugging.

2.1 Non-deterministic MPI applications
A classical trade-off between performance and repro-

ducibility can be found in a domain-decomposed particle

Monte Carlo algorithm [3], which is in use by many codes
developed at the Lawrence Livermore National Laboratory
(LLNL). In any such code, the MPI processes must exchange
two types of messages: a message for the particles that cross
domain boundaries and need to be sent to neighbor pro-
cesses; and a message to coordinate the exit of the particle-
processing loop at the end of the time step. The scien-
tists found that they must make all communications needed
for these exchanges asynchronous, in order to scale to to-
day’s massively parallel systems with millions of hardware
threads [17].

Unfortunately, this asynchrony caused the algorithm to
produce different numerical solutions from one run to an-
other, even under the exact same environment. In the be-
ginning of each time step, each MPI process posts non-
blocking receives for all possible incoming messages and
detects incoming message receives by periodically calling
MPI_Testsome after processing a certain number of local
tasks, e.g., processing local particles. Upon detecting a
newly received particle, the MPI process simply appends it
to its local particle list and immediately posts another non-
blocking receive for the next message from the same MPI
process.

While highly efficient, the first-come, first-served algo-
rithm allows each MPI rank to process its particles in a
different order from run to run. If two neighbors send parti-
cles at the same time, the receiver may process the particle
sent by either sender in the opposite order in two different
runs. As double precision arithmetic is not associative, i.e.,
a + (b + c) �= (a + b) + c, summing up certain global tallies
over the particles may produce deviations. These varying
solutions are all statistically equivalent in production simu-
lations. However, the programmers have had difficult times
in debugging the codes, in particular because the variation
can hide or confuse the effects of a bug.

The particle Monte Carlo algorithm is just one example
that illustrates how massively parallel MPI applications are
becoming increasingly non-deterministic. In order to run
simulations efficiently on massively parallel systems with
hundreds of thousands or millions of compute elements [17],
asynchronous parallel algorithms are becoming increasingly
commonplace. Further, the MPI standard has been respond-
ing to their needs with more advanced features (e.g., non-
blocking collectives) and network vendors have been intro-
ducing various optimization for collectives; both of which
can add an additional dimension to non-determinism.

2.2 Record-and-replay as General Solution
A highly scalable record-and-replay technique is an attrac-

tive solution in combating non-determinism. With this tech-
nique, programmers can simply turn on recording of commu-
nication behavior in one run and deterministically replay the
same communication behavior for subsequent runs. This is a
far more general approach than ad hoc algorithmic solutions
that programmers often employ to mitigate their numerical
reproducibility issues [7, 19]. In particular, this technique
not only helps programmers debug their code through nu-
merical variations, but also through other variations in code
behavior (e.g., intermittent crashes) without having to re-
quire any change to the code.

Sadly, the existing approaches [21, 6, 2, 13, 15, 14, 28] fall
far short of meeting the needs of the high-end HPC environ-
ments. Most require very large storage and use excessive file
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Figure 1: Lamport clock values of received messages
in MCB (MPI rank = 0)
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Figure 2: Record and Replay with CDC

I/O to record the traces. To make this technique practical at
large scale, we must significantly lower the size of recorded
data, ideally, small enough to fit into node-local storage (e.g.,
ramdisk), even for very long simulations. Avoiding global
file system accesses not only improves the performance of
the recording phase but also that of the replay: a subsequent
replay accesses the data only from local storage where the
application was initially executed.

3. CLOCK DELTA COMPRESSION (CDC)
Providing highly-scalable order-replay as a general solu-

tion for non-determinism control requires at least one or-
der of magnitude more efficient storage usage. We achieve
this by exploiting our empirical observation on the common
non-deterministic communication patterns described in Sec-
tion 2: the global order of messages exchanged among MPI
processes are very similar to a logical-clock order (e.g., Lam-
port clock). As an indication of this observation, Figure 1
shows the Lamport clock values of the particle-exchange
messages that MPI rank 0 of MCB has received in sequence
when running at 48 processes. It is remarkable that the
received Lamport-clock values almost always monotonically
increase. In other words, most messages are received in the
order of Lamport clocks.
Exploiting this observation for the first time, we can sig-

nificantly decrease the storage usage by recording only those
receives that deviate from this reference logical-clock order.
One can cheaply establish the total-order reference system
of messages by piggybacking each message with a Lamport
clock and using the MPI rank as the arbitrary mechanism to
break ties. For a long simulation, however, even a small de-
viation can still grow the recorded data large. Thus, we use

MPI_Irecv (req1, ANY_SOURCE, ANY_TAG)�

MPI_Irecv (req2, ANY_SOURCE, ANY_TAG)�

MPI_Test (req1)�

MPI_Test (req2)�

MPI_Send (msg1, tag=1)�
MPI_Send (msg2, tag=1)�

MPI_Test (req1)�

MPI process 
(rank=X) 

MPI process 
(rank=Y) 

Figure 3: Application-level out-of-order receives

a series of compression techniques that are highly tailored
to this order differential data.

This novel encoding, compression and decoding scheme is
called Clock Delta Compression (CDC). More specifically,
Figure 2 illustrates the end-to-end tool flow of the record-
and-replay scheme with CDC. Each application process in-
tercepts MPI calls via PMPI to keep track of the information
on receives. During the record phase, when an MPI process
handles communication events, MPI passes these events to
CDC, which then encodes and compresses these events be-
fore placing them to storage. During the replay phase, CDC
reads and decodes the recorded data, and then the MPI pro-
cesses replay the corresponding communication events.

Message sends become deterministic if message receives
are replayed in most of non-deterministic applications (as
formulated later in Definition 7) [5]. Even if message
sends are non-deterministic due to return values of non-
deterministic function calls for acquiring current times or
random numbers, we can still make these functions deter-
ministic by simply recording the return values of the func-
tions [28]. Thus, this work only targets message receives,
similarly to other order-replay techniques [13, 15, 14].

In the remaining of this section, we first describe the
minimum set of information required by general record-
and-replay techniques for correct replays (Section 3.1) and
then detail how CDC compresses the record data (Sec-
tion 3.2, 3.3 and 3.4).

3.1 Base Record Needed for Order-Replay
In general, to replay a specific message-receive order in

message matching functions (MF), such as the MPI Wait

family (i.e., MPI Wait, UPI Waitall, MPI Waitany and
MPI Waitsome) and the MPI Test family (i.e., MPI Test,
MPI Testall, MPI Testany and MPI Testsome), we need to
record a trio: matching status, matched message set and
message identifier on each MF call for every MPI process.
The matching status is to record if the test is matched or
not in the MPI Test family. By recording the flag value
returned via an MPI Test call, we record matching sta-
tuses. In MPI Waitall, MPI Waitsome, MPI Testall and
MPI Testsome, multiple messages can be matched in a sin-
gle MF call. The matched message set is to record which
messages are matched in a single MF call. The message
identifier is to identify a message uniquely, distinguishing it
from the other messages.

Traditional order-replay techniques record the source and
tag obtained via MPI Status as the message identifier. How-
ever, through our analysis using non-deterministic appli-
cations, we found that a pair of source and tag cannot
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uniquely identify a message. While MPI guarantees that
an MPI rank receives messages in the order of sends from
a same sender, applications can still receive these messages
out of order because of subtle timing issues with MPI calls.
Figure 3 shows such an example. Since messages are re-
ceived in the order of sends from a same sender at the MPI
level, req1 matches msg1, and req2 matches msg2. At the
application-level, however, the application is notified of the
message receive of msg2 first, and then msg1. Both msg1 and
msg2 have the same message identifier, i.e., source=Y, and
tag=1, but the order between msg1 and msg2 can change
across different runs.
If an order-replay system records source and tag for the

message identifier, the system cannot correctly replay when
msg1 is notified first during the record phase, but msg2 is no-
tified first during a replay. Unless the application attaches
genuine message identifiers to each message in order to dis-
tinguish messages (e.g. msg1 and msg2), the application
can experience incorrect replays. To solve the application-
level out-of-order problem, we use logical clocks, Lamport
cock (clock). In our scheme, a Lamport clock contributes
to uniquely identifying messages. We piggyback each mes-
sage with a clock, and we use source as well as the clock as
our message identifier. The detailed definition of our Lam-
port clock rule is in Definition 4.

In summary, recording correct replays requires five val-
ues: count, flag, with next, rank, and clock. count is the
recurrences of the same event captured in the row, flag

records the matching status, and with next is to record
if a message is received with the next message, retaining
the matched message set for MPI Waitall, MPI Waitsome,
MPI Testall, and MPI Testsome. Figure 4 shows an exam-
ple of a recording table that each process must manage inde-
pendently. Because order-replay needs to record a quintuple
for correct replays, this process needs to write 55 values (the
five values × 11 events) to storage in this example. In the
rest of the sections, we demonstrate how to reduce the 55
values down to 19 values through CDC; redundancy elimi-
nation, permutation encoding and linear predictive encoding
(Figure 5).

3.2 Redundancy Elimination
We first perform redundancy elimination since the record-

ing table has redundant information. CDC divides the
record table into a matched-test table, a with next table,
and an unmatched-test table (Figure 6) so that we can re-
move the redundant information.

For with next, we only record which messages are re-
ceived with the next message. Therefore, if an application
does not call MPI Waitall, MPI Waitsome, MPI Testall and
MPI Testsome, the size of the with next table becomes zero
because only one message can match in a single MF call.
For the unmatched-test table, we only record how many
times unmatched-test events happen before receiving mes-
sages. If no unmatched-test event happens before receiving
messages, CDC does not include the event in the table. For
example, if an application does not call the MPI Test family,
unmatched-test events also will not occur, and the size of the
unmatched-test table becomes zero. After this redundancy
elimination, CDC can reduce the number of recording values
to 23 values in the example.

3.3 Permutation Encoding
Next, CDC applies permutation encoding to the matched-

test table. In the permutation encoding, CDC defines a
reference logical-clock order based on Lamport clocks (ref-
erence order), and computes the permutation difference to
an actual receive order (observed order) by using an edit
distance algorithm (Section 4.1). Then, CDC records in
the permutation-difference table how many messages are de-
layed (delay) compared to the reference order as in Figure 7.
If the observed order is completely identical to the refer-
ence order, CDC records nothing for the matched-test table.
For example, if a rank receives messages from senders with
monotonically increasing clock values, the recording size for
the matched-test table becomes zero.

If a rank receives multiple messages with same clocks (e.g.
clock 8 in Figure 4), CDC defines a message from a smaller
rank to be earlier than the ones from bigger ranks (Defi-
nition 6). Because the permutation difference between an
observed order and a reference order is based on receiving
clocks, CDC cannot correctly replay if the receiving clocks
change from run to run for replays. Since the message re-
ceives are non-deterministic, the piggybacked clocks may
vary from run to run. However, as validated in Section
5, CDC can send consistent piggybacked clock values, and
therefore, can correctly replay.
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3.4 Linear Predictive Encoding
If the permutation difference is small, each delay value

in the permutation-difference table is also expected to be
close to zero. Meanwhile, index values in the with next,
unmatched-, and matched-test tables monotonically increase
as the length of the table increases. To achieve a higher com-
pression rate to index values in gzip, CDC applies Linear
Predictive (LP) encoding to the index values.
LP encoding is a compression technique used in audio data

[4] and predicts xn(>0) from the past p number of values as:

x̂n =

p∑

i=1

ai × xn−i (xi≤0 = 0) (1)

en = xn − x̂n (2)

where x̂n is a predicted value of xn, en is an error. With LP
encoding, if we store {e1, . . . , en}, we can recursively restore
{x1, . . . , xn}, because e1 is always same as x1 (e1 = x1−x̂1 =
x1 − 0 = x1). In terms of the length of storing values,
{x1, . . . , xn} and {e1, . . . , en} are the same size. However, if
we can give an accurate prediction to xi by a choice of p, and
ai=1...p, ei becomes close to zero, thereby we can achieve a
high compression rate to the sequence using gzip.
For the prediction of integer values for index, we predict

xn assuming xn is on an extension of a line created by xn−1

and xn−2, i.e., xn − xn−1 = xn−1 − xn−2, which gives p =
2, (a1, a2) = (2,−1). Thus, en can be represented as:

en = xn − 2xn−1 + xn−2 (xn≤0 = 0) (3)

For example, if we encode sequence of {1, 2, 4, 6, 8, 12, 17},
the encoded sequence becomes {1, 0, 1, 0, 0, 2, 1}. If we apply
the linear predictive encoding to index values in the tables
of Figure 6, 7, and combine the tables, the CDC encoding
format is represented as in Figure 8.

3.5 Epoch Enforcement
In practice, debugging tools need to minimize memory us-

age, therefore, record-and-replay needs to periodically flush
out records from memory to local storage as a chunk. How-
ever, if applications periodically flush out the chunks, CDC
may not correctly replay the order of message receives in
some cases. For example, if CDC encodes and flushes out
the record shown in Figure 4 as a chunk in record mode,
incorrect replay can occur. In replay mode, for example, if
the MPI rank receives a message with (rank:2, clock:17)
earlier than a message with (rank:0, clock:18), incorrect re-

P0 
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P2 

2 13
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8

Replayed event 

Replaying event 

Observed  
receive event 

f 1

f 2

e

Figure 9: Example: Condition for correct replay

play occurs because the message (rank:2, clock:17) needs
to be replayed using one of the subsequent chunks.

To guarantee that each message is replayed using an ap-
propriate chunk, CDC also adds an epoch line table. With
the epoch line, CDC can know which chunk of record should
be used for each receive message. In this example, because
the message (rank:2, clock:17) runs off the epoch line, CDC
can know this message should be replayed by one of the sub-
sequent chunks in the record. The complete CDC format is
represented in Figure 8. By applying the redundancy ex-
clusion, the permutation encoding, and the LP encoding to
the record in Figure 4, we can reduce the number of storing
values from 55 to 19. Finally, CDC applies gzip to the CDC
encoding format. The CDC format is highly compressible
by gzip because most of the values are expected to be close
to zero.

3.6 Condition for Correct Replay
When decoding for a replay, CDC retains multiple mes-

sages, permutates the messages, and returns them in the
permutated order to the application. Therefore, CDC can
correctly replay only when CDC receives the certain num-
ber of messages, and can create the same reference order
as the one in the record. To formulate the condition, we
give an example in Figure 9. Figure 9 shows a snapshot
when CDC replays receive event e where the first message
receive is already replayed, and other messages (f1, f2), are
already received but not replayed. First, to correctly re-
play e, clocks of the receive events, f1, f2 and e, need to
be replayed (Axiom 1 (i)). Then, given the receive events,
CDC computes reference order based on the received clocks
({f1 = 8, f2 = 8, e = 13}). Thus, CDC must wait until
f1, f2 are received (Axiom 1 (ii)). Then, CDC permutates
e to become the next replay event, i.e., {f1 = 8, f2 = 8,
e = 13} → {e = 13, f1 = 8, f2 = 8} based on the permu-
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tation difference table. In addition, the reference order of
message receive order must be consistent between a record
and a replay. Therefore, CDC needs to make sure that the
minimum clock of the next receive message is more that 13
(Axiom 1 (iii)). We denote the minimum clock of the next
receive message as Local Minimum Clock (LMC). In gen-
eral, these three conditions for correct replay of CDC can
be formulated as Axiom 1 in Section 5. We will prove the
correctness in Section 5.

4. IMPLEMENTATION OF CDC

4.1 Fast Edit Distance Algorithm for CDC
To compute the permutation difference between an ob-

served order, B (= {b0, . . . , bN−1}), and a reference order,
P (= {p0, . . . , pN−1}), we use an edit distance algorithm
(EDA) [20]. Edit distance algorithms are used in natural
language processing and computational biology, e.g., to com-
pute the sequence alignment of two DNA strings, the similar-
ity of two documents, or to perform spell checking. For our
purposes, we apply the edit distance algorithm to compute
differences between observed and reference order of mes-
sage receives. Figure 10 illustrates an edit distance matrix
(EDM) created to compute the permutation distance be-
tween B = {0, 3, 2, 1, 4, 7, 5, 6} and P = {0, 1, 2, 3, 4, 5, 6, 7}
in the example of Figure 7. When an EDA creates an EDM,
the EDA finds all of indices i and j where bi = pj , which
are illustrated as a blue backslash (BSk) in Figure 10. Thus,
time complexity of the EDA is generally O(N2) to find a
minimum edit distance.
Thankfully, if we apply an EDA to CDC, we can re-

duce the time complexity to O(N + D) where D is the
edit distance because we can make two assumptions to in-
put arrays, B and P . First, B is a permutation of P , i.e.,
x ∈ B ⇔ x ∈ P . Second, P consists of sequential numbers.
Thus, CDC can easily find indices i and j where bi = pj ,
such that j = bi by O(1). The time complexity of this oper-
ation becomes O(N) for B and P of length N. In addition,
to find the minimal edit distance, we can dynamically find
the shortest path from the BSk based on Manhattan dis-
tance when BSk is created. This operation is illustrated as
a purple arrow in Figure 10. For example, when BS4 is cre-
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ated, the EDA finds the shortest path from the BS4 to the
BSk=1,2,3. Thus, time complexity of this operation becomes
O(D), and overall time complexity of EDA for CDC be-
comes O(N +D). If differences between the reference order
and an observed order are small, D becomes small, thereby
the encoding time becomes short as well.

In EDA, an edit distance is generally described by inser-
tion(>), deletion(<) and substitution(|). In this example,
the difference is described in the array on the right-side of
Figure 10. Since the condition, x ∈ B ⇔ x ∈ P , is held in
CDC, substitution does not exist, and a pair of “< x”and“>
x” exists in any permutated x. Thus, the pair of the < and
> can be replaced into permutation as shown in Figure 7.

4.2 Asynchronous Recording
Both encoding and file I/O are costly operations. If CDC

blocks application processes whenever encoding and writ-
ing record chunks, the overall performance of the applica-
tion would significantly degrade. To avoid this overhead, we
asynchronously record message receives. Figure 11 shows
the CDC implementation overview for record and replay.
Using a CDC-dedicated thread (CDC thread), CDC over-
laps the application’s computation (main thread).

In record mode, CDC tracks all of message-receive events
through the MPI profiling interface (PMPI) [10]. The main
thread enqueues events to the observe queue, which is man-
aged by the CDC thread to receive the events. One event
contains count, flag, with next, rank and clock as de-
scribed in Figure 4. Then, the CDC thread dequeues, and
applies CDC to the events in the observe queue, then writes
the encoded record to storage. CDC creates a single observe
queue for a pair of main and CDC thread. Since this queue
model is a single-producer (main thread), single-consumer
(CDC thread) model, i.e., SPSC model, both main and CDC
thread can concurrently enqueue and dequeue events race
free without needing explicit mutual exclusion.

In replay mode, CDC also tracks all message-receive
events through PMPI. Then, the CDC thread permutates
the observed message-receive events according to the record
written during the record phase and enqueues the replayed
events to the replay queue. Then, the PMPI layer dequeues
the replayed events and returns to the main thread. Since
the replay queue is also an SPSC model, the main and CDC
threads can exchange events without needing explicit mu-
tual exclusion. Because CDC permutates observed message-
receive events for the replay, the CDC thread needs to retain
a certain number of messages in the observe queue and wait
until enough messages are received for the permutation. In
the example of Figure 10, CDC waits until all the three
messages, b1, b2 and b3, are received to replay them, and
similarly in b5, b6 and b7.



4.3 Replayable Clock
Clock piggybacking is indispensable for CDC to create the

reference order. Some systems have the wall-clock time gen-
erated from a highly accurate physical global clock, and on
such systems one may think this would create a reference
order, which is more close to the corresponding observed
order. However, wall clock is neither deterministic (run to
run) nor replayable because it changes the reference order
in subsequent replays, and thus cannot be used for reliable
replay in CDC. As mentioned before, our approach is to
use a Lamport clock. Although Lamport clocks received by
an MPI process can vary slightly from run to run due to
non-determinism in message receives, Lamport clocks are
replayable, which we validate in Theorem 2 in Section 5.
Another approach would be to use a Vector clock. Unfor-
tunately, Vector clocks are not scalable [26]. Thus, we em-
ploy a Lamport clock following rules defined in Definition 4
for creating the reference order of message receives. For fu-
ture work, we will consider other replayable clock definitions
to further increase similarity between the reference and ob-
served orders.
To send a piggyback clock, we use MPI datatypes to at-

tach piggyback data [24] to a message payload. Because we
use several PMPI layers for CDC, we integrate the PMPI
layers using the PNMPI infrastructure [25]. Piggybacking in
MPI is known to degrade communication performance [24].
However, as shown in Figure 16, with improved datatype
support in modern MPI implementations the overhead is
small, in particular for the domain of debugging tools. What
is more important is for the application to maintain scala-
bility under record and replay, which CDC enables.

4.4 Matching Function (MF) Identification
Non-deterministic applications usually use several MF

calls at different locations in the program. Different MF
instances are used for different purposes, therefore there are
different dependencies among messages exchanged via differ-
ent MFs. If we separately create reference orders for differ-
ent MFs, we can create a reference order that more closely
follows the corresponding observed order. To achieve this,
when MFs are called, we analyze the call stacks of the func-
tion calls, and separately manage the record tables (Table
in Figure 4) for the different MF call instances.

5. REPLAY CORRECTNESS
As mentioned in Section 4.3, CDC can correctly replay a

message-receive order only if the Lamport clock is correctly
replayed. To validate that the clock is replayable and that
CDC can correctly replay program executions, we describe
the proof in this section.

Definition 1 (Ordered set). If X = {x1, x2, . . . } is an or-

dered set, then“X = X́”⇔“xi = x́i”where xi ∈ X, x́i ∈ X́

Definition 2 (Events). Let e be a send or receive event.
Let E be an ordered set of e and contain only send events or
only receive events. Let Ex

i be i-th E of process Px. Let E
be an ordered set of E. Let Ex be E of process Px. Under
the definition, if Ex

i is an ordered set of send events, Ex
i+1 is

an ordered set of receive events. Likewise, if Ex
i is an ordered

set of receive events, Ex
i+1 is an ordered set of send events.

With this definition, we can describe a process as a series of
the events, e. In the example of Figure 12, the process (P1)
can be described as {e0, . . . , e6} = {E1

1 , E1
2 , E1

3} = E1.

Proof in Theorem 1.(i) 

Proof in Theorem 1.(ii) 

Proof in Theorem 1.(iii) 
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Figure 12: Example: Communication dependency
graph with three processes

Definition 3 (Event dependency). If E depends on E, we
denote the dependency as E → E. In Figure 12, E0

2 has a
dependency, {E1

1 , E
0
1} → E0

2 .

Definition 4 (Lamport clock). Let a Lamport clock be up-
dated following two rules: (i) When a process sends a mes-
sage, the process attaches its current clock to the message,
then increments the clock by 1; (ii) When a process receives
a message, the process sets its clock to be the maximum of
the received clock and its own clock, then increments the
clock by 1.

Definition 5 (Event clock function). Let fc be fc : E �→ N,
fc(e) is a clock value of event e. Therefore, “e → f” ⇒
“fc(e) < fc(f)”, or “fc(e) ≥ fc(f)”⇒ “e �→ f”.

Definition 6 (Totally ordered relation for creating the ref-
erence order). Let fm be fm : E �→ N, fm(e) is an or-
dering number for message-receive events in CDC where
“fm(e) < fm(f)”⇔ “(i) fc(e) < fc(f) or (ii) rank of sender
e < rank of sender f if fc(e) = fc(f)”. Based on this totally
ordered relation, CDC creates reference logical-clock orders.

Definition 7 (Determinism in message send). In non-
deterministic applications, we can make two assumptions.
(i) The first send events are deterministic, i.e., ∀x s.t. “Ex

1

is send events” ⇒ “Ex
1 is deterministic”, or “φ → Ex

1 ” ⇒
“Ex

1 is deterministic”. In Figure 12, E1
1 is send events, and

has no dependency, i.e., φ → E1
1 . Therefore, E1

1 = {e0, e1}
are deterministic. (ii) Send events are deterministic if the
all previous message events are replayed, i.e., “∀E → E s.t.
E is replayed, E is a send event set” ⇒ “E is determin-
istic”. In Figure 12, if E1

1 and E0
1 are replayed, the next

series of send events (E0
2) becomes deterministic because of

{E1
1 , E

0
1} → E0

2 .

Definition 8 (CDC observed receive-event set: B). Let B
be a set of observed receive events. In Figure 11, when the
main thread enqueues a receive event (e), e is included in
B, i.e., e ∈ B.

Axiom 1 (Condition for correct replay of e). “CDC can
correctly replay e” ⇔ “{∀f ∈ E | fm(f) < fm(e)} s.t. (i)
clocks of f , e is replayed, (ii) f ∈ B and (iii) fc(e) < LMC“.
LMC is the local minimum clock. (Qualitative explanation
is in Section 3.6).



Proposition 1. Receive events are replayable if the all pre-
vious message events are replayed, i.e., “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”.

Proof. Show ∀e ∈ E s.t. e is replayed if E is replayed
by proving e holds conditions in Axiom 1 (i)(ii)(iii). (i) E
is replayed. Therefore, clock of f, e is replayed. In Figure 9,
clocks of f1, f2 and e are replayed because E is replayed.
(ii) ∀f ∈ E s.t. fm(f) < fm(e). Therefore, it holds e �→ f
(∵ Definition 5, 6). Because f has no dependency to e,
receive event f eventually happens, and is enqueued to B,
i.e., f ∈ B. In Figure 9, f1 and f2 are eventually received
because e �→ f1, f2 is met. (iii) Suppose CDC cannot replay
event e due to fc(e) ≥ LMC, i.e., ∃ĝ ∈ E s.t. fm(e) > fm(ĝ).
(iii-a) If e �→ ĝ, receive event ĝ is eventually received, and
LMC is incremented. This LMC incrementation continues
until fc(e) < LMC or e → ĝ is met. (iii-b) If e → ĝ, fc(e) <
fc(ĝ) is met. Therefore, fm(e) < fm(ĝ). This is contrary to
fm(e) > fm(ĝ). According to (i)(ii)(iii), “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”

�

Theorem 1. CDC can correctly replay message events, that
is, E = Ê where E and Ê are ordered sets of events for a
record and a replay mode.

Proof (Mathematical induction). (i) Basis: Show
the first send events are replayable, i.e., ∀x s.t. “Ex

1 is send
events”⇒ “Ex

1 is replayable”. As defined in Definition 7.(i)
Ex

1 is deterministic, that is , Ex
1 is always replayed. In Fig-

ure 12, E1
1 is deterministic, that is, is always replayed. (ii)

Inductive step for send events: Show send events are
replayable if the all previous message events are replayed,
i.e., “∀E → E s.t. E is replayed, E is send event set”⇒ “E
is replayable”. As defined in Definition 7.(ii), E is determin-
istic, that is, E is always replayed. (iii) Inductive step for
receive events: Show receive events are replayable if the
all previous message events are replayed, i.e., “∀E → E s.t.
E is replayed, E is receive event set” ⇒ “E is replayable”.
As proofed in Proposition 1, all message receives in E can
be replayed by CDC. Therefore, all of the events can be re-
played, i.e., E = Ê. (Mathematical induction processes are
graphically shown in Figure 12.) �

Theorem 2. CDC can replay piggyback clocks.

Proof. As proved in Theorem 1, since CDC can replay
all message events, send events and clock ticking are re-
played. Thus, CDC can replay piggyback clock sends. �

6. EVALUATION
Two of our main goals are to reduce the size of the

recorded data and to minimize an impact to the application
performance. In this section, we show how much CDC can
reduce the record size for order-reply compared to the tra-
ditional method. We also show the performance impact to
the applications for recording. We conduct our evaluations
on the Catalyst cluster at LLNL. The details of Catalyst are
described in Table 1. We use local storage, Intel SSD 910
Series, for recording data.

6.1 Compression Efficiency
First, we evaluate the compression efficiencies of various

methods. We use MCB as a representative benchmark for
non-deterministic applications [1]. MCB, one of the CORAL

Table 1: Catalyst Specification
Nodes 304 batch nodes
CPU 2.4 GHz Intel Xeon E5-2695 v2

(24 cores in total)
Memory 128 GB

Interconnect InfiniBand QDR (QLogic)
Local Storage Intel SSD 910 Series

(PCIe 2.0, MLC)
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Figure 13: Total compressed record sizes on MCB
at 3,072 processes (Execution time: 12.3 seconds)

benchmark codes, simulates the behavior of particles based
on the heuristic transport equation model as described in
Section 2.1. Figure 13 shows the total compressed record
sizes produced by different compression methods on MCB
at 3,072 processes. gzip is a method that applies gzip to
the baseline format as shown in Figure 4. We denote a
method which only applies redundancy elimination (Section
3.2) as CDC(RE). CDC(RE + PE + LPE) is a method
which applies the permutation encoding (Section 3.3) and
the linear predictive encoding (Section 3.4), and CDC is the
complete method of CDC which applies all of the presented
techniques including the MF identification (Section 4.4). We
use zlib [9] for the gzip method.

As shown in the Figure 13, CDC exhibits a higher com-
pression rate than gzip, and the compression rate of CDC is
5.7 times higher than gzip. Especially, the average number of
bytes required to record a single receive event (bytes/event)
is 0.51 bytes, which is approximately only 4 bits to record a
single event, i.e., count, flag, rank, with next and clock.
In MCB, particles are exchanged as a message, and an MPI
process does not send a particle x until the MPI process
receives the particle x from another process, and the parti-
cle x hits the boundary. Such communication dependency
constrains the variety of message receives, which effectively
decreases the difference between a reference and an observed
order.

For our evaluation at 3,072 MPI processes, about 9.7 mil-
lion of message-receive events are observed in total. If we
recorded these receives without compression as in the tra-
ditional order-replay technique, i.e., the format in Figure 4,
the record size becomes significantly large. For example,
if we use count (64 bits), flag (1 bit), rank (32 bits),
with next (1 bit), clock (64 bits) for an event (162 bits
in total), the size becomes 197.0 MB. Therefore, the effec-
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Figure 14: Percentage of permutation on MCB at
3,072 processes (Execution time: 12.3 seconds)
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Figure 15: Per-node record-size estimates as simu-
lation time increases (24 processes/node case)

tive compression rate of CDC is higher by almost two orders
of magnitude. Since the compression rate of CDC is better
than the other CDC methods, i.e., CDC(RE), CDC(RE +
PE + LPE), we only evaluate CDC in the rest of the eval-
uations.
We also evaluate how similar the observed order is to the

reference order on MCB at 3,072 processes. Figure 14 shows
the similarity histogram for each and every MPI rank. To
quantify the similarity, we use the percentage of permu-
tated messages, which is computed by the number of per-
mutated messages (Np) divided by the total number of re-

ceived messages (N), i.e.,
Np

N
. Thus, the percentage be-

comes 37.5% (= 3/8) in the example of Figure 7. As shown
in the figure, the similarity is approximately 30% on aver-
age, which means 70% of the observed messages followed the
reference order. The more similar, the more efficiently CDC
can compress the recorded data relative to gzip as well.
Reducing the record size is important so that all of the

recorded data can fit into node-local storage. We estimate
the required storage size per node based on the results in
Figure 13. Figure 15 shows the per-node record size esti-
mate as simulation time increases. As shown in the figure,
the record size grows as simulation time gets longer. How-
ever, because the CDC compression rate is far higher than
gzip, the slopes of CDC are flatter than the ones of gzip. In
this evaluation, we record on local SSDs. But, for example,
if a system can provide only 500 MB of memory space (e.g.,
ramdisk), the gzip approach only allows the tool to record
data for 5 hours for MCB. Meanwhile, with CDC, applica-
tions can run for 24 hours while keeping all of the recorded
data in local memory.
MCB is just one non-deterministic application and other

applications may have greater communication intensity. To
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Figure 16: Recording overhead to MCB

estimate the record size of an application whose communi-
cation intensity is higher than that of MCB, we estimate the
size when dealing with higher communication intensity. As
shown in Figure 15, gzip requires much more storage space
than CDC as communication intensity increases. Mean-
while, CDC record data requires 1 GB of local space to fit a
24-hour simulation with communication intensity two times
higher than that of MCB.

6.2 Scalability of Recording
We evaluate the runtime overhead of CDC as measured

by how much CDC degrades the performance of the ap-
plication. Again, we run MCB with and without CDC at
increasing numbers of processes. We use weak-scaling where
the number of simulated particles per process is always con-
stant: 4,000. In this evaluation, we configure CDC to write
the record data to the local storage of Catalyst. Figure 16
shows the performance of MCB with and without gzip and
CDC. The performance metric, tracks/sec, means how many
particles are tracked per second during the simulation. As
shown in this figure, MCB is still scalable with CDC, and
its performance only marginally decreases with CDC: 13.1%
to 25.5%. Because CDC asynchronously encodes and writes
the record data to the storage without blocking application
threads, the overhead is reduced accordingly.

However, we find that CDC incurs higher runtime over-
head than gzip. Because CDC trades off storage efficiency
with increased computation for compression, this observa-
tion is expected. Compared to gzip, the performance differ-
ence is 4.6%-13.9%. The overhead is attributed to the edit
distance algorithm and is constant regardless of the number
of processes because CDC does not require communication
across processes. However, reducing the record size is much
more critical than reducing the runtime overhead in scaling
order-replay. For example, if an application only provides
500 MB memory for record-and-replay, the memory space is
filled up after 5 hours in gzip as shown in Figure 15, and the
application is forced to flush it out to the next level in the
storage hierarchy such as a parallel file system, which may
not be scalable. Meanwhile, with CDC, an application runs
longer than 50 hours, running scalably for a much longer
period of time. Thus, reducing the record size is more crit-
ical than reducing the performance overhead for scalability
unless the overhead is unacceptably huge.

In CDC, the observe queue, which is used for transfer-
ring events from the main thread to the CDC thread, is
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Figure 17: Compression size in hidden determinis-
tic communications with 6,114 processes (1K itera-
tions)

bounded and will block the main thread when the queue
is filled up. In practice, CDC is not expected to block
the MPI thread because the evaluation shows the recording
speed (dequeuing speed), 331K [events/sec/process], is much
faster than the event-production speed (enqueuing speed),
258 [events/sec/process], due to the high compression rate
of CDC. Another expected source of overhead is clock pig-
gybacking. However, the overhead is negligibly small be-
cause of the following reasons. First, the piggybacking clock
value takes up only 8 bytes, a size much smaller than a
typical message payload. Second, because of asynchronous
algorithms used in non-deterministic MPI applications, com-
munications are often overlapped with computations. Our
evaluation shows that 8-byte piggybacking increases the ex-
ecution time of MCB only by 1.18%.

6.3 Hidden Deterministic Communication
An application can use MPI ANY SOURCE in MF calls even

though the actual message-receive order is deterministic
(hidden determinism). No existing record-and-replay tech-
nique can detect whether the MF calls are deterministic or
non-deterministic without having observed the runtime be-
havior. We need to record all of the message-receive or-
ders that have the potential to be non-deterministic, un-
less users explicitly annotate these calls to be excluded from
being recorded. In the case of such hidden determinism,
record-and-replay tools can consume storage with unneces-
sary recording. Although CDC also cannot detect the hid-
den determinism, CDC can become more powerful in coping
with this problem because LP encoding can predict numeri-
cal sequences more accurately when the communication has
regular patterns, which deterministic communications usu-
ally exhibit.
To evaluate the compression rate for hidden-deterministic

applications, we record the message receive order of an ap-
plication [11], which solves the Poisson’s equation solution
using the Jacobi iteration method. Figure 17 shows the
compression sizes on this application. As shown in the fig-
ure, the record size of gzip is 91MB while that of CDC is
only 2MB (2.2%). Because the current CDC format is de-
signed to record all MPI MF calls, CDC always records the
with next table. As shown in the result, CDC exhibits sig-
nificantly high compression rate for deterministic commu-
nications. Therefore, even if users have no idea whether

a communication pattern of a running application is non-
deterministic, deterministic or both, CDC can efficiently
record them as if deterministic communications are auto-
matically excluded for recording.

7. RELATED WORK
Debugging non-deterministic parallel applications is

an arduous task. Tools, which ease debugging non-
deterministic parallel applications, are becoming more im-
portant as applications are becoming increasingly complex
and non-deterministic. Deterministic replay is one of the ap-
proaches that can ease the debugging of non-deterministic
applications and can be further divided into three categories:
data-replay, order-replay and hybrid.

Data-replay [21, 6, 2] records message payloads in addi-
tion to the message receive order. With data-replay, pro-
grammers can choose to replay only one target process as
it can use the recorded message payloads. However, data-
replay approaches need to record all communication events
including both deterministic and non-deterministic events,
and produce vastly large amounts of recorded data in order
to save the message payloads. Because the recorded data
cannot fit in memory nor local storage, it is not feasible to
scale this approach to an extreme scale.

Another approach is order-replay [13, 15, 14]. Although
order-replay requires running all processes in a replay mode,
the approach significantly reduces the record size compared
to data-replay. However, even with order-replay, the record
size can grow large for long running simulations, and this ap-
proach needs to flush out the recorded data to a parallel file
system, which can hamper scalability. Further reduction of
the recorded data like ours, therefore, significantly advances
this approach. In addition, existing order-replay techniques
cannot correctly replay executions in a case like the one de-
scribed in Section 3.1. Xue et al. [28] proposed a hybrid
approach of data- and order-replay. However, this approach
suffers from the storage issue for high-end computing.

Compression is extensively studied in the context of com-
munication tracing tools [29, 22, 27]. Noeth et al. [22]
proposed a compression technique that takes advantage of
similarities in communication patterns. By only recording
the differences, this approach reduces the trace data. But
non-determinism can hamper this approach by removing
the similarities. CYPRESS [29] extracts the communica-
tion patterns by applying static and dynamic analysis to
the code. In deterministic applications, each process ex-
changes messages as statically written in the code, and thus
the static analysis can improve the compression rate. In
non-deterministic applications, however, each process ran-
domly exchanges messages, which can reduce the effective-
ness of this approach. On the other hand, CDC takes ad-
vantage of the similarities in communication orders between
an observed order and a logical-clock order and achieves a
high compression rate even in non-deterministic applications
whose communication patterns are random. Wu et al. [27]
proposed lossy compression techniques on communication
trace data for replay. While lossy techniques can reduce the
record size, it can be largely ineffective for debugging, which
generally requires exact replay.

To the best of our knowledge, this work is the first com-
pression technique that can scale order-replay to extreme
concurrency.



8. CONCLUSION
We have proposed a new and highly scalable approach,

CDC, to record and deterministically replay MPI-based
massively parallel executions. CDC creates a reference
logical-clock order based on Lamport clocks and then records
only the differences in message-receive orders between this
reference and the observed order. Our evaluation showed
that CDC can reduce the recording size by a factor of 5.7
over gzip. As dedicated threads record the traces asyn-
chronously to the application, CDC also keeps the perfor-
mance impact on the application at bay. When record-
ing hidden deterministic communications, our results show
that CDC can practically avoid any recording. With highly
compact storage footprints, minimal performance overheads,
and effective corner-case handling, CDC exhibits all of the
characteristics needed to combat the side effects of non-
determinism as a general solution.
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