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University of Utah

Salt Lake City, UT, United States

{simone, ganesh, zvonimir}@cs.utah.edu

Ignacio Laguna, Gregory L. Lee,
Dong H. Ahn

Lawrence Livermore National Laboratory

Livermore, CA, United States

{ilaguna1, lee218, ahn1}@llnl.gov

Abstract—The detection and elimination of data races in large-
scale OpenMP programs is of critical importance. Unfortunately,
today’s state-of-the-art OpenMP race checkers suffer from high
memory overheads and/or miss races. In this paper, we present
SWORD, a data race detector that significantly improves upon
these limitations. SWORD limits the application slowdown and
memory usage by utilizing only a bounded, user-adjustable
memory buffer to collect targeted memory accesses. When the
buffer fills up, the accesses are compressed and flushed to a file
system for later offline analysis. SWORD builds on an opera-
tional semantics that formally captures the notion of concurrent
accesses within OpenMP regions. An offline race checker that is
driven by these semantic rules allows SWORD to improve upon
happens-before techniques that are known to mask races. To
make its offline analysis highly efficient and scalable, SWORD
employs effective self-balancing interval-tree-based algorithms.
Our experimental results demonstrate that SWORD is capable of
detecting races even within programs that use over 90% of the
memory on each compute node. Further, our evaluation shows
that it matches or exceeds the best available dynamic OpenMP
race checker in detection capability while remaining efficient in
execution time.

Index Terms—Dynamic Data Race Detection; Concurrency
Bugs; Data Races; OpenMP; High Performance Computing;
HPC; Offline Analysis

I. INTRODUCTION

Given the inexorable march toward higher computational

efficiencies, many critical software components are being

transitioned to adopt on-node parallelism. The predominant

parallel programming model of choice in this endeavor is

OpenMP. Even though OpenMP provides constructs that ease

the expression of parallelism, programmers still introduce data

races that may appear innocuous at first glance, but in fact

have serious consequences (an example involving the Hypre

library is provided in related work [1]). Such incidents and

recent studies (e.g., [2]) have helped elevate the importance of

data race checking of large-scale OpenMP programs. Static-

analysis-based data race detection tools are often considered

by those aiming for scalability; however, these tools are also

known for their high false alarm rates [3], [4], [5], [6].

As a result, dynamic analysis is preferred, with four recent

OpenMP race checking tools based on it being Helgrind [7],

This work was performed under the auspices of the U.S. Department
of Energy by LLNL under Contract DE-AC52-07NA27344 (LLNL-CONF-
740324), NSF OAC 1535032, and NSF CCF 1704715.

TSan [8], [9], Intel�Inspector XE [10], and ARCHER [1].

Recent work [2] provides a comparative study of these tools

on the also contributed data race benchmark suite. Overall,

while Helgrind and TSan are well-engineered and mature

tools, they are fundamentally designed for low-level models

such as POSIX Threads. Since they do not model OpenMP

synchronization, they end up generating false alarms on real

OpenMP programs.

ARCHER has emerged as a tool capable of handling realistic

programs in production settings and avoiding false alarms,

thanks to the incorporation of the OpenMP synchronization se-

mantics [11]. In addition, ARCHER owes its success to the use

of a static analysis phase that excludes statically-guaranteed

race-free loops from dynamic analysis, and its reliance on the

TSan engine—a well-engineered implementation of happens-

before race checking. However, ARCHER suffers from three

significant drawbacks: high memory overhead, race omission

due to shadow-cell evictions, and happens-before race mask-

ing. In this paper, we introduce a fully redesigned new race

checker called SWORD that overcomes these limitations. We

now describe these drawbacks and point out how SWORD

overcomes them.

a) High Memory Overhead: Happens-before race check-

ers typically log read and write accesses, assigning them log-

ical time instances (e.g., vector clock values or epochs [12]).

Ideally, such tools must maintain all memory accesses. Un-

fortunately, this is impossible in practice, given the large

number of variables and accesses in realistic programs. As

a compromise, TSan, and hence also ARCHER, only maintain

four1 memory accesses per 8 bytes of application memory

(hereafter called a memory word). Each access record (called

a shadow cell) also occupies one word. Thus, it is clear that the

memory consumption quintuples (and in practice, it goes up 6-

fold due to other per-thread overhead). We have observed this

when ARCHER was applied on the AMG2013 benchmark: the

6-fold increase with respect to total application memory gave

us an out-of-memory (OOM) error. There is no easy way to

predict application memory needs, and thus OOM is a lurking

danger even with only four shadow cells.

SWORD has very low memory requirements, as it does

1A default setting, but adjustable between 1 and 8.
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not employ shadow cells. In SWORD, each thread collects

memory accesses into its own buffer, and it suffices to allocate

a fixed 2 megabytes per thread buffer.2 When each buffer fills

up, the associated thread (independent of the other threads)

compresses and writes out the buffer to disk. The advantages

of independently collecting the traces are several. For instance,

when collecting events associated with OpenMP barriers, the

threads do not have to wait for each other to finish the barrier.
b) Race Omission due to Shadow-Cell Evictions: Since

ARCHER retains and analyzes only four accesses per memory

word, a fifth access ends up evicting one of these cells. Un-

fortunately, this results in missed races, as has been observed

while using ARCHER on real-world applications. SWORD does

not suffer from this drawback, as it retains all accesses.
c) Happens-Before Race Masking: A happens-before

race checker such as ARCHER can mask races when otherwise

conflicting accesses are separated by a happens-before path

created as an artifact of the particular schedule (see Figure 1).

This form of race masking is reported in prior literature [13],

[14], and also shows up in practice while using ARCHER.

In SWORD, an offline synchronization recovery and race

analysis phase detects races. This phase is driven by an

operational semantics of OpenMP [15] that determines which

accesses are concurrent. This approach completely avoids

happens-before race masking. It also directly supports inde-

pendent trace collection; for instance, it is the offline analysis

that helps us put together the separately collected OpenMP

barriers. Overall, SWORD aims to guarantee completeness of

data race checking for a given execution if it does not have

data-dependent branches.

Highlights of SWORD’s Implementation

Our initial implementation of this approach in SWORD

proved quite disappointing, as some examples took days to

run. After careful optimization, we brought down this time for

the same examples to a few seconds. Our use of the following

mechanisms was central to achieving this performance:

• state-of-the-art self-balancing interval trees for recording

and merging traces;

• an efficient realization of Offset-Span Labels [16] for

concurrency discovery; and

• constraint solving to detect conflicting accesses through

complex strided access patterns and partial word overlaps.

SWORD also enjoys high portability, thanks to its use of a

standard trace collection method based on OMPT, an emerging

tools interface that is expected to be incorporated into future

OpenMP standards [17]. To summarize, the contributions of

SWORD are as follows:

• bounded memory (as little as 2 MB) instead of taking

gigabytes of shadow-cell storage;

• free of race omissions due to shadow-cell evictions;

• no happens-before-induced race masking;

• publicly available as an open-source GitHub project at

https://github.com/PRUNERS/sword.

2A user-adjustable bound, but we found that 2 MB is typically optimal
since it easily fits within modern L3 caches.

Thread 0 Thread 1

acquire(L)

read(a)

write(a)

write(a)

release(L)

acquire(L)

read(a)

write(a)

release(L)

(a) No happens-before
(race detected)

Thread 0 Thread 1

write(a)

acquire(L)

read(a)

write(a)

release(L)

acquire(L)

read(a)

write(a)

release(L)

(b) Happens-before
(no race detected)

Figure 1: Different interleavings generated by the same pro-

gram. Dashed lines indicate that the write operations of Thread

0 can occur simultaneously with the operations of Thread 1.

Solid lines indicate happens-before edges between the threads.

II. BACKGROUND

A data race occurs when two concurrent memory accesses

(one of which is a write) target the same memory location.

Dynamic race detectors employ happens-before (typically

implemented using vector clocks [18] or variants) to deter-

mine whether two accesses are concurrent. Given a thread

schedule (interleaving), the underlying concurrency semantics

yields a happens-before relation. Figure 1 shows two possible

interleavings of the same program. In part (a), a race is

caught because of the absence of any happens-before ordering

between Thread 0’s write(a) invocation and Thread 1’s read(a)

or write(a) invocation. In part (b), write(a) of Thread 0

is happens-before ordered before both read(a) and write(a)

accesses of Thread 1, causing the race to be missed. This is

one common source of missed races we observe in ARCHER.

Notice that even without any branches in the code, the choice

of interleavings decides whether a race is detected or missed.

In SWORD, this sort of race omission does not happen, as the

true concurrency status of two accesses is computed using our

operational semantic model.
To further detail shadow-cell eviction mentioned in the

previous section, consider the following example harboring a
race with respect to a[0] because, while multiple threads read
the array location a[0], exactly one thread is arranged to write
it without synchronization:

int a[N];

#pragma omp parallel for
for(int i = 0; i < N; i++) {
a[i] = a[i] + a[0];

}

Suppose the master thread (thread 0) got a head start and

created an access record of a[0] being written. Given the

multiple reads on a[0] from other threads, it is possible that

this write record is purged before race-checking is invoked

(i.e., all 4 shadow cells hold read accesses). In this situation,

this race can be missed.
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0 - [0,1]

1 - [0,1][0,2] 2 - [0,1][1,2]

3 - [0,1][0,2][0,2] 4 - [0,1][0,2][1,2]

7 - [0,1][2,2]

5 - [0,1][1,2][0,2] 6 - [0,1][1,2][1,2]

11 - [0,1][3,2]

12 - [1,1]

8 - [0,1][2,2][0,2] 9 - [0,1][2,2][1,2]

10 - [0,1][4,2]

IBarrier(3)

Barrier(1)
read(x)
write(y)

write(x)
m_acq()

m_rel()

read(y)
m_acq(M1)

m_rel(M1)
IBarrier(4)

Barrier(2)

write(y)
m_acq(M1)

m_rel(M1)

write(x)
m_acq()

m_rel()

IBarrier(6)

FOR-LOOP

IBarrier(7)

R1: race on y

R2: race on y

R3: race on x

IBarrier(5)

Figure 2: Structure of an OpenMP program, where

m acq/m rel denotes a mutex acquire/release, IBarrier(id)
an implicit, and Barrier(id) an explicit OpenMP barrier.

Concurrency Structure of OpenMP: Figure 2 shows

the concurrency structure of an OpenMP program with two

nested parallel regions where threads access shared memory

locations. The figure depicts OpenMP barriers, as well as

memory accesses and synchronization operations in-between.

We define a barrier interval to be a pair of adjacent barriers

along with the set of memory events spanned by them. For

example, Barrier Interval 3 includes the operations performed

between barriers 1 and 3 (in general, some of these barriers

could be implicit barriers—denoted by IBarrier—such as

introduced by default at the end of OpenMP parallel sections).

Our offline analysis phase associates each memory access

event or synchronization event it receives with the barrier

interval within which the event occurs. It is easy to observe

that the accesses carried out by two different threads within

the same barrier interval are concurrent and potentially can

race. For example, data race R1 happens within the same

Barrier Interval 3 between threads 3 and 4 since they both

write to y without synchronization. However, accesses within

sequentially ordered barrier intervals cannot race. For instance,

the write to x in Barrier Interval 1 by Thread 3 cannot have

a data race with the read of x by Thread 4 in Barrier Interval

3, as these accesses are separated by a barrier (and hence

are sequentially ordered). However, with nested parallelism,

two threads that belong to two different barrier intervals can

in fact race; races R2 and R3 are of this nature. These two

data races happen because the threads are accessing shared

variables (y for R2 and x for R3) from two barrier intervals

that belong to different concurrent parallel regions. Our offline

analysis phase relies on offset-span labels to identify if two

accesses are concurrent (we apply the data race analysis only

to concurrent accesses).

Offset-Span Labels: An offset-span label tags each

thread’s execution point with a sequence of pairs (e.g.,

[0, 1][0, 2][0, 2]), marking its lineage in the concurrency struc-

ture defined by prior forks and joins. By comparing these

labels we can determine if two threads are concurrent, thereby

focusing the data race analysis only to potentially racy threads.

The domain for the offset-span labels is OSL = (N×N)∗,

i.e., each member osl ∈ OSL is a sequence of pairs

[a1, b1][a2, b2], . . . , [an, bn]. A pair consists of offset and span.

The span indicates the number of threads spawned by the fork

(e.g., start of a parallel region) from which the pair originates.

The offset distinguishes the pair among the other pairs orig-

inating from the same parent. Take label [0, 1][0, 2][0, 2] of

Thread 3 in Figure 2 as an example. Starting from the end, the

pair [0, 2] indicates that the thread has ID 0 in a parallel region

of two threads; the second pair [0, 2] is the thread’s parent with

ID 0 in a parallel region of two threads; the first pair [0, 1]
is the predecessor of the thread’s parent and represents the

master thread.

Let osl1, osl2 ∈ OSL be two offset-span labels associated

with Thread 1 and Thread 2, respectively. These labels are

sequential (i.e., Thread 1 and Thread 2 are not concurrent)

when either

case 1: ∃ P, S . osl1 = P ∧ osl2 = PS, where P and S
are non-empty sequences of pairs, or

case 2: ∃ P, Sx, Sy, ox, oy, s . osl1 = P [ox, s]Sx ∧
osl2 = P [oy, s]Sy ∧ ox < oy ∧ ox mod s = oy mod s, where

P , Sx, Sy are (possibly empty) sequences of pairs.

Otherwise, the labels are concurrent (see [16] for details). This

judgement of concurrency is not based on building happens-

before, thus avoiding problems such as highlighted in Fig-

ure 1(b): in particular, SWORD will detect this race. However,

our semantics (and hence SWORD’s implementation) does not

take into account data-dependent control flows. Thus, if a

program bases its control-flow branch decisions on the order in

which prior synchronization actions have been executed, then

SWORD will miss races. Barring this, SWORD is a faithful

realization of our semantics (albeit, coded manually).

III. IMPLEMENTATION DETAILS

A. Dynamic Analysis

Compiler Instrumentation: We implemented SWORD us-

ing the LLVM/Clang tool infrastructure [19] (see Figure 3).

Our LLVM instrumentation pass instruments all load and store

instructions that are executed within a parallel region. (We

ignore sequential instructions as they cannot race.)

Log Collection: At runtime, SWORD collects all the

information necessary for offline data race detection. Recall

that each thread gathers its logs without coordination with

the other threads. For this, the threads interact with the

OpenMP runtime through the OMPT interface, and gather

all the information regarding thread creation, parallel region

begin/end, and synchronizations points (e.g., barriers, critical

section). OMPT provides a data field for each callback, and

we generate unique IDs for each OpenMP construct analyzed

(e.g., ID for a parallel region, ID for a critical section); we
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OpenMP C/C++ Clang/LLVM Compiler

Sword Instrumentation Pass
▪ Clone functions: sequential 

and parallel version
▪ Instrument loads/stores in 

parallel version

OpenMP
Source
Code

Dynamic Analysis

Binary
LLVM 

IR

OpenMP RT with OMPT Support

SWORD Runtime

Logs

Offline Analysis

Race 
Report

Red black-tree
create and compare 

Figure 3: SWORD tool flow.

pid ppid bid offset span level data begin size
0 – 0 0 24 1 0 50,000
0 – 1 0 24 1 50,000 75,000
1 – 0 0 24 1 75,000 10,000

TABLE I: Example of thread’s meta-data file. Each line

corresponds to one barrier interval. Column pid is parallel

region ID, ppid is parent parallel region ID, bid is barrier

ID, offset and span define offset-span label, level is level of

parallelism, data begin is offset (in bytes) in the log file of

the beginning of the respective data chunk, size is its size.

store this information inside the data field so that the IDs can

be retrieved during the logging process and stored into log

files. Meanwhile, the instrumented parallel loads and stores

gather information about every parallel memory access (e.g.,

size, read or write, atomic).

Each thread maintains one log file and one meta-data file.

The log file contains the information about memory accesses

and OpenMP events, while the meta-data file contains the

IDs of parallel regions, offsets into the log file to obtain the

data (i.e., memory accesses and OpenMP events) regarding a

specific parallel region, and other information. Table I details

each thread’s meta-data file, which helps the offline analysis

identify the concurrency structure. Each line in the meta-data

file represents a barrier interval. This information is used by

the offline data race detection algorithm to extract from the

log file the chunk of data for a specific barrier interval.

During program execution, SWORD collects the memory

accesses and OpenMP events information into limited-size

thread-local storage buffers. When a buffer gets full, it is

compressed and asynchronously written out into a log file.

We compared several open-source compression algorithms,

namely LZO [20], Snappy [21], and LZ4 [22]. In our case,

they all have similar performance and compression ratios, and

we chose LZO since it was easier to integrate into SWORD.

Bounded Dynamic Analysis Overhead: As previously

mentioned, during the dynamic analysis each thread maintains

a thread-local storage buffer to collect memory accesses and

OpenMP events before writing them into a file. We fine-tuned

the buffer size to minimize cache misses, and we found that

an optimal size for our setup holds 25,000 events, amounting

to around 2 MB total. The SWORD runtime maintains ad-

ditional information in several thread-local storage variables.

The amount of memory needed by SWORD for this auxiliary

storage and OMPT is around 1.3 MB per thread. Given that

the memory overhead is bounded and independent of the

characteristics of the analyzed application, we can obtain a

formula representing the total memory overhead of SWORD.

Let N be the number of threads, B the memory overhead

introduced by SWORD per thread, and C the memory overhead

introduced by the OMPT interface. Then, the total memory

overhead of SWORD is N×(B+C). Our experimental results

show that in our setup the total memory overhead of SWORD

is around 3.3 MB per thread (which includes the aforesaid

auxiliary storage).

B. Offline Analysis

Offline analysis starts by analyzing the meta-data files to

identify the concurrency structure. Once the algorithm has

identified all pairs of concurrent barrier intervals and threads, it

obtains information about the memory accesses and OpenMP

synchronization operations from the log files. The meta-data

file contains an offset for each barrier interval indicating the

location of pertinent data in the log files. The size of a single

log file can be dozens of gigabytes, and hence the entire data

collection from an application can be in the order of terabytes.

Thus, even without application memory pressure, it is not

always possible to analyze all the data directly in memory.

To handle large log files efficiently, we employ a streaming
algorithm [23] that reads access information from log files in

small chunks and carries out our analysis.

For each thread, the algorithm builds an interval tree to

summarize memory accesses and to maintain information

about OpenMP events. In our implementation, we use an

augmented red-black tree [24] to maintain the interval tree

balance and to speed up the operations of insertion and search.

A node in an interval tree contains the range of memory

accesses3 it represents, and auxiliary information such as the

operation type (R/W), size of the access, stride of the interval,

program counter, and mutex set. The interval tree approach

allows us to summarize the information about consecutive

memory accesses (e.g., array accesses) in one node. Data race

detection is then performed by comparing the interval tree of

each thread to the interval trees of other concurrent threads.

When a node in the tree overlaps with a node of another tree

there is a potential race.

Figure 4 shows an example of two threads accessing an

array of structures. Each thread is accessing a different field

of the structure, performing either a read or write, and there

are no overlapping accesses—hence also no data race. During

the offline analysis, SWORD summarizes the accesses of both

threads using the two shown intervals. The two intervals do

overlap; however, if we consider the size and the stride of the

3We treat a single access as a range with the same beginning and end.
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xx y x y x y x yy

10 1314 18 22 26 30 34 38 42 4617 21 25 29 33 37 41 45 49

addresses

struct Coordinate {
   int x;
   int y;
}

Coordinate a[5];

T0 accesses a.x

T1 accesses a.y

Interval Info

[10,42], 4, 8

[14,46], 4, 8

[START, END], SIZE, STRIDE

Figure 4: Example of threads that access the same memory

interval but do not have common addresses.

accesses, they do not actually have any addresses in common,

as the threads are accessing different memory locations. Thus,

a simple overlap check is not sufficient to identify whether

two intervals intersect.

In our offline race detection algorithm, we use all the

available interval information (e.g., count, stride) to check

if two intervals have memory addresses in common. For an

interval of thread Ti, we represent all addresses that belong to

it with the following constraint:

Δ · xi + bi + si = a

∧ 0 ≤ xi ≤ ((e− b)/Δ)

∧ 0 ≤ si < s,

where a is an address belonging to the interval, b and e are

the starting and ending address of the interval respectively, Δ
is the stride, and s is the size of the memory access. If we

consider the example in Figure 4, we can represent all the

addresses for intervals of T0 and T1 with these constraints:

T0 : 8 · x0 + 10 + s0 = a

∧ 0 ≤ x0 ≤ 4

∧ 0 ≤ s0 < 4

T1 : 8 · x1 + 14 + s1 = a

∧ 0 ≤ x1 ≤ 4

∧ 0 ≤ s1 < 4

If their conjunction is satisfiable, then the threads are

accessing a common address. Furthermore, if at least one

of the operations is a write, then a race is reported. In our

implementation, we use integer linear programming to solve

the constraints, and in particular GNU GLPK Version 3.63

(any other solver with similar capabilities could be employed).

The algorithm complexity is O(Nlog(N)) for the interval

tree creation with N being the number of memory accesses:

it takes O(log(N)) to insert a node into a tree and this is

done for all N memory accesses. The comparison of two

interval trees is O(Mlog(M)) with M being the number of

nodes in the tree: each of the M nodes in a tree is compared

to the other trees, which is a binary search with complexity

O(log(M)). Note that M ≤ N since an interval tree can

summarize multiple access into one interval node.
Interval Tree Example: The following example, when

executed with two threads, contains a data race in array a
due to a data dependency:

int a[1000];

#pragma omp parallel for num_threads(2)
for(int i = 1; i < 1000; i++) {
a[i] = a[i - 1];

}

During the dynamic analysis, SWORD generates two log files

and two meta-data files. Since the program has only one

parallel region and one barrier interval, the meta-data files

contain only one line. The offline data race detection algorithm

extracts the barrier interval data using the meta-data files, and

builds one red-black interval tree per thread.

Figure 5 shows possible interval trees for the two threads

executed by the program. Each node in an interval tree

describes a memory access or a collection of memory accesses

(e.g., array accesses). In addition, each node has fields to store

information about the operation type (read or write), size of the

memory access, program counter, and list of mutexes held for

that specific memory access. When the algorithm identifies two

overlapping intervals, as shown in red/underlined in Figure 5,

it employs the additional information in nodes to construct an

integer linear constraint used to check if there is a potential

race. The algorithm also checks whether one of the intervals

is a write operation and if the intersection of the mutex lists is

empty. If these two conditions are met and the linear constraint

is satisfiable, a race is reported. In the case of Figure 5, the

two red/underlined intervals are overlapping since they have

an address in common. Therefore, SWORD reports a race at

the lines of code associated with the program counter stored

by the intervals.

C. Limitations

Although SWORD supports most of the constructs defined

by the OpenMP specification, in its current form it cannot

analyze programs based on OpenMP tasking. The main lim-

itation for supporting OpenMP tasking is that the current

formulation of the offset-span label mechanism does not allow

for identifying whether two threads that executed two different

tasks are concurrent or not. This is critical to avoid false

alarms and missed races. Despite this limitation, programs

that employ OpenMP tasking are still rare, thus SWORD can

analyze most of the existing OpenMP applications.

IV. EXPERIMENTAL RESULTS

We evaluate SWORD on two OpenMP microbenchmark

suites and four large real-world HPC applications. More

specifically, we select DataRaceBench [2] and OmpSCR [25]

OpenMP microbenchmarks to show the effectiveness of

SWORD in terms of identifying data races. In addition, we

use real-world HPC applications to assess its performance

and memory overhead. We compare SWORD against the state-

of-the-art OpenMP data race checker ARCHER [1].4 In our

4We also performed a preliminary comparison with the latest version
of Intel�Inspector XE. We obtained results that are very similar to its
comparison with ARCHER from our previous work [1]. Hence, we omit a
detailed comparison with Intel�Inspector XE from this paper.
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[335820,335820],1
R,4,4208860

[335820,335820],1
W,4,4208658

[335824,335824],1
W,4,4208639

[335816,335816],1
W,4,4208677

[335820,335820],1
R,4,4208822

[335820,335820],1
W,4,4208884

[335920,335920],1
R,4,4208736

[335812,335812],1
W,4,4208696

[335820,335820],1
R,4,4208926

[335824,335824],1
R,4,4208902

[337888,339884],500
R,4,4208985

[337892,339888],500
W,4,4209028

(a) Interval tree for Thread 0

[183564,183564],1
R,4,4208860

[183564,183564],1
W,4,4208658

[183568,183568],1
W,4,4208639

[183560,183560],1
W,4,4208677

[183564,183564],1
R,4,4208822

[183564,183564],1
W,4,4208884

[183664,183664],1
R,4,4208736

[183556,183556],1
W,4,4208696

[183564,183564],1
R,4,4208926

[183568,183568],1
R,4,4208902

[339888,341880],499
R,4,4208985

[339892,341884],499
W,4,4209028

(b) Interval tree for Thread 1

Figure 5: Example interval trees. The red/underlined nodes are the two overlapping intervals that identify the race. The node’s

fields represent respectively [begin,end] of the interval, count, type of operation, access size, and program counter.

experiments, we run two configurations of ARCHER: with

default settings and with the “flush shadow” option enabled.

The purpose of enabling this option, which flushes memory

between independent parallel regions, is to try to reduce

the memory overhead of ARCHER and to have a more fair

comparison with SWORD. We also use the default setup of 4

shadow cells per ‘line’ (see Section II).

We perform our evaluation on a machine with two 12-

core Intel Xeon E5-2695v2 processors, 32GB of RAM, and

800GB of SSD storage. The machine runs the TOSS Linux

distribution (kernel version 3.10), which is a customized distri-

bution specifically optimized for HPC clusters. We average the

measured runtimes and memory overhead of all benchmarks

across 10 executions, and we vary the number of threads from

8 to 24. In the experimental results, “baseline” denotes the

original benchmark characteristics with data race checking dis-

abled, while “archer” and “archer-low” denote ARCHER in its

default and low memory overhead configuration respectively,

and “sword” denotes our SWORD tool.

A. DataRaceBench Microbenchmarks

The DataRaceBench microbenchmark suite [2] consists

of small OpenMP codes with and without data races;

each ‘racy’ benchmark contains one known data race doc-

umented by the authors. We run every tool on all bench-

marks and inspect the outcomes; none of the tools re-

port false alarms, and they also successfully identified

almost all races. All tools missed the races in bench-

marks indirectaccess{1-4}-orig-yes. These data

races do not manifest along all program paths, and given

that both SWORD and ARCHER are dynamic analysis tools

that analyze only the executed control flow, they can

miss such races. In benchmarks nowait-orig-yes and

privatemissing-orig-yes, SWORD analysis is more

complete and it reports races that ARCHER misses for the rea-

sons discussed in Section II. These are all read-write data races

happening in the same shared variable and parallel region.

Because of multiple reads by the same thread, the shadow cells

maintained by ARCHER are eventually overwritten, and this

information loss causes these races to be missed. SWORD does

not suffer from such information loss, and it correctly identifies

them. Note that all tools report an additional unknown race in

plusplus-orig-yes, and SWORD reports an additional

unknown race in privatemissing-orig-yes as well.

# of Reported Data Races
Benchmark archer archer-low sword

c loopA.badSolution 1 1 1
c loopB.badSolution1 1 1 1
c loopB.badSolution2 1 1 1

c md 1 1 2
c testPath 2 2 6

cpp qsomp1 1 1 2
cpp qsomp2 1 1 2
cpp qsomp5 1 1 3
cpp qsomp6 1 1 2

TABLE II: Data races reported in OmpSCR suite.

These are not false alarms, but rather real races that the

authors of the benchmarks have failed to document (we have

reported this, and anticipate a fix in their next release). Finally,

since DataRaceBench benchmarks are small, the runtime and

memory overheads are similar among the tools.

B. OmpSCR Microbenchmarks

The OmpSCR benchmark suite contains known data races

that have been documented in previous works [25], [1].

Table II gives the number of data races detected by each

tool. (We again omit race-free benchmarks since we ver-

ified that none of the tools report false alarms.) SWORD

not only identifies the same races as ARCHER, but also

detects new undocumented races in the following bench-

marks: c_md, c_testPath, cpp_qsomp1, cpp_qsomp2,

cpp_qsomp5, and cpp_qsomp6. Our manual inspection

confirmed that all these races are real. ARCHER missed these

races for all the reasons summarized in Section I.

Figure 6 gives the geometric mean of the runtime and

memory overheads to indicate the overall tendency of the

values, considering the large gaps in execution time and

memory usage among the different benchmarks. The runtime

overhead is small for all tools, while the relative memory

overhead is large due to small baseline, but still less than

100 MB for all tools. Also note that the memory overhead

of SWORD is constantly around 3.3 MB per thread, as we

indicated in Section III. When compared, the runtime and

memory overhead of the SWORD data collection is lower than

ARCHER in both configurations. The plots do not include

the runtime and memory overhead of the offline data race

detection algorithm, which may increase the total amount of

resources needed by SWORD for a complete analysis.
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Benchmark baseline(s) archer(s) archer-low(s) sword
DA(s) OA(s) MT(s) #PR LS

c fft 0.13 0.81 0.84 0.52 2.09 1.34 2 2.4MB
c fft6 0.03 0.14 0.15 0.12 0.12 0.12 1 122kB

c jacobi01 0.9 19.83 20.91 2.57 2.06 1.33 2 51MB
c jacobi02 0.89 19.64 20.38 2.59 0.63 0.63 1 51MB

c loopA.badSolution 0.03 0.47 1.59 0.18 3.16 0.35 100 394kB
c loopA.solution1 0.03 0.65 2.76 0.36 5.88 0.22 200 981kB
c loopA.solution2 0.03 0.3 0.39 0.27 0.14 0.14 1 452kB
c loopA.solution3 0.03 0.3 1.43 0.23 2.33 0.17 100 458kB

c loopB.badSolution1 0.03 0.47 1.62 0.3 3.03 0.14 100 398kB
c loopB.badSolution2 1.79 4.08 5.26 2.26 3.09 0.15 100 390kB

c loopB.pipelineSolution 0.03 0.28 0.32 0.25 0.14 0.14 1 462kB
c lu 0.04 10.5 15.81 0.83 25.35 0.28 499 20MB

c mandel 0.08 5.06 5.05 0.37 0.1 0.1 1 81kB
c md 0.47 80.87 84.47 3.65 0.55 0.17 21 1.5MB
c pi 0.02 0.14 0.17 0.14 0.11 0.11 1 81kB

c qsort 0.04 0.23 0.33 0.14 0.27 0.12 10 125kB
c testPath 0.03 0.26 0.33 0.26 0.09 0.09 1 81kB

cpp qsomp1 1.38 259.9 264.32 5.46 1.76 1.76 1 321MB
cpp qsomp2 1.38 262.8 263.19 5.39 1.82 1.82 1 303MB
cpp qsomp5 14.27 41.54 41.51 55.44 16.47 16.47 1 204MB
cpp qsomp6 1.52 263.51 263.16 5.36 1.93 1.93 1 316MB

Mean 1.1 46.28 47.33 4.13 – – – –
Median 0.04 0.81 2.76 0.37 – – – –

Geometric Mean 0.15 0.81 2.76 0.37 – – – –

TABLE III: Overheads on the OmpSCR suite executed with 24 threads, including the execution time of the parallel offline

analysis. Column baseline is the baseline runtime; archer is the ARCHER runtime; archer-low is the low memory overhead

ARCHER configuration runtime; DA is the total dynamic analysis runtime including logging; OA is the offline analysis runtime

when executed on just one node (24 threads); MT (Max Time) is the time taken by 24 threads to analyze the region of

the offline traces that have the maximum amount of trace info (MT can reduce with more threads); #PR is the number of

independent parallel regions to analyze; LS is the amount of storage required to store the generated log files.
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Figure 6: Geometric mean of runtime and memory overhead

for OmpSCR suite; the number of threads varies from 8 to 24.

Table III shows the overheads of the offline data race

checking with SWORD compared to the two ARCHER con-

figurations. The runtime overhead depends on the size of log

files and the number of parallel regions the algorithm has to

analyze for each benchmark. We distributed the offline analysis

across a cluster of nodes, and the offline data race detection

in that case typically lasts from a few milliseconds up to a

few seconds (column MT). Moreover, even running the entire

offline analysis on a single node (24 threads) takes less than a

minute for all benchmarks (column OA). We omit the memory

overhead for the dynamic analysis since it is negligible given

the small size of the benchmarks. While for most of the

benchmarks the dynamic analysis terminates quickly and does

not differ much from the runtime overhead of ARCHER, for

some the offline analysis takes a considerable amount of time.

C. HPC Benchmarks

We assess the performance and memory overhead of

SWORD using four small to large-size HPC benchmark

codes. We use three codes, namely AMG2013, LULESH, and

miniFE, from the CORAL benchmark suite [26], while the

fourth code HPCCG is a part of the Mantevo project [27].

These codes model scientific problems and simulations, and

their size ranges from tens to hundreds of thousands of lines

of code. We also leverage AMG2013 to evaluate the overheads

of the tools with an increasing problem size. AMG2013

is a parallel algebraic multigrid solver for linear systems

arising from problems on unstructured grids. Therefore, we

perform the evaluation using 4 different grid sizes: 103

(AMG2013 10), 203 (AMG2013 20), 303 (AMG2013 30),

and 403 (AMG2013 40).

Table IV shows the number of data races detected by each

tool. Note that none of the tools report false alarms. Both

tools find one race in HPCCG, which happens in a parallel

region where all threads are writing the same value into a

shared variable. While this race may seem harmless, it in fact

results in undefined behavior based on the C/C++ standard,
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# of Reported Data Races
Benchmark archer archer-low sword

miniFE 0 0 0
HPCCG 1 1 1

LULESH 0 0 0
AMG2013 10 4 4 14
AMG2013 20 4 4 14
AMG2013 30 4 4 14
AMG2013 40 OOM OOM 14

TABLE IV: Data races reported in HPC benchmarks. OOM

indicates that a tool ran out of memory during the analysis.

and compiler optimizations could unpredictably modify the

outcome of this program [1], [28]. ARCHER detects 4 known

races in smaller-scale AMG2013 runs [1], while it runs out of

memory at large scale. SWORD both completes the analysis at

large scale and detects 10 additional races missed by ARCHER.

These races happen in the same large parallel region (around

400 LOC) as the others, and they are all the same type of

read-write races. As before, ARCHER misses them since it

maintains only a limited number of previous accesses, while

SWORD detects them since it logs every memory access.

Figure 7 shows the slowdown and memory overhead of the

tools on the HPC benchmarks. ARCHER in both configurations

exhibits a larger slowdown than SWORD as we are increasing

the number of threads. The “archer-low” configuration flushes

the shadow memory in-between independent parallel regions,

and the plots show that this slightly reduces the memory

overhead, but it also increases the runtime overhead because

of the additional operations to release memory pages. SWORD,

on the other hand, exhibits better scaling, typically resulting in

a faster dynamic analysis than ARCHER, with the exception of

LULESH (see Figure 7c). LULESH executes a large number

of parallel regions and barriers that significantly increase the

number of I/O operations during the log collection phase

of SWORD. The plots show that the memory overhead of

ARCHER depends on the baseline memory consumption and

is around 5–7× of the baseline. On the other hand, SWORD’s

memory overhead is bounded since it depends only on the

number of threads (it is around 3.3 MB per thread) and

not the baseline. Figure 8 further analyzes this behavior by

varying the problem input size of AMG2013. This clearly

illustrates a major advantage of SWORD: as the baseline

memory consumption increases ARCHER runs out of memory,

while SWORD’s bounded memory overhead allows it to finish

its analysis successfully.

As Figure 7 and Figure 8 indicate, SWORD’s dynamic anal-

ysis (log collection) is typically faster than ARCHER at larger

scales. However, we need to take the offline analysis execution

time into account to represent the total runtime overhead of

SWORD. Table V shows the overheads of the tools including

the offline analysis of SWORD. The overall analysis runtime of

SWORD for HPCCG, including the offline data race detection

process, is less than 2 minutes if executed on a single node

and can be reduced to several seconds if executed on a cluster;

the latter is not significantly different from ARCHER. On the

other hand, SWORD is about 4 times faster than ARCHER

on miniFE. On LULESH, the SWORD’s dynamic analysis

is slower compared to ARCHER since LULESH generates

almost 300,000 independent parallel regions which increase

the I/O operations, thereby slowing down the data collection

phase. Subsequently, the SWORD’s offline analysis takes more

than 24 hours, because of the large number of regions to

analyze. For our experiments we used 24 cores per node, each

core generating the interval-tree of a different thread. While

the tree generation cannot be efficiently parallelized since it

would require the use of locks, we could significantly reduce

this large offline analysis time by using many more cores

for the comparison of the interval trees of different threads.

The most interesting case is AMG, where ARCHER runs out

of memory at large problem sizes and does not complete

its analysis, while SWORD is able to collect all the data at

runtime and perform the offline data race detection process.

Even though the SWORD’s offline analysis takes about an hour

when executed on a single node, it does not take more than

a few minutes when executed on a cluster, and the data race

detection is more complete than ARCHER.

V. RELATED WORK

Data race detection is a widely studied problem in concur-

rent programming. Netzer and Miller provide a good survey

of general approaches for data race detection [29]. A number

of different techniques have been proposed, including static

analysis [3], [5], [6], [30], [31], dynamic analysis [9], [12],

[32], and hybrid analysis [33]. These are not directly appli-

cable to OpenMP, as they fail to consider the runtimes and

internal actions of OpenMP programs. A complete survey of

data race detection methods is beyond the scope of this work;

in this section we focus on works that either address OpenMP

race checking, or are more closely related.

There has been prior work on OpenMP race checking,

including the use of dynamic analysis (e.g., [34]) and symbolic

analysis (e.g., [35]). Our prior work [1] and its precursor [36]

document the success of ARCHER in practical OpenMP race

checking, and this observation is also in line with that in a

recent study [2]. The main weakness of ARCHER is its mem-

ory consumption, which can be 6× the amount of memory

needed by the innate (unmodified) application. ARCHER does

provide an option to release some of the allocated memory in

between independent parallel regions, thereby often reducing

the memory overhead by around 30%. However, as we show

in Section IV, even this memory reduction is insufficient for

dealing with large OpenMP applications that allocate up to

90% of the available memory in each compute node.

There have been many efforts that make race checking effi-

cient by exploiting structured parallelism found in languages

such as Cilk [37], X10 [38], or Habanero Java [39]. These

techniques are not directly applicable to OpenMP. Similarly

to SWORD, Wilcox et. al. [40] propose an approach to reduce

memory overhead by employing array summarization, where

array accesses can be summarized into the same shadow-cell.

This approach reduces the memory overhead by about 30% for
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Figure 7: Relative slowdown and memory overhead compared to the baseline for HPC benchmarks.

Benchmark baseline(s) archer(s) archer-low(s) sword
DA(s) OA(s) MT(s) #PR LS(GB)

miniFE 4.7 101.4 101.6 13.3 8.1 4.3 28 1.1
HPCCG 0.4 10.5 46.3 14.4 84.9 2.3 898 2.8

LULESH 3.9 116.1 115.6 131.7 >24h 40.0 300,000 9.8
AMG2013 10 2.2 19.8 20.1 14.9 811.0 5.4 1,272 2.4
AMG2013 20 7.7 149.1 147.2 115.9 2,116.0 41.0 1,527 20.0
AMG2013 30 23.8 471.4 448.2 418.7 3,153.0 133.2 1,575 57.0
AMG2013 40 57.2 OOM OOM 1,251.4 3,871.0 180.2 2,036 162.0

TABLE V: Overheads on the HPC benchmarks executed with 24 threads, including the execution time of the parallel offline

analysis. See Table III for the explanation of columns. OOM indicates that the tool ran out of memory during the analysis.
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Figure 8: Runtime and memory overhead on AMG2013 with

varying problem size executed with 24 threads.

array-intensive applications. However, it does not overcome

the happens-before and shadow-memory limitations explained

in Section II.

VI. CONCLUSIONS

Given the growing importance of OpenMP for harnessing

on-node parallelism, data races in production-scale OpenMP

programs present a looming threat to reliable parallel software

design. Today’s happens-before-relation-based race checkers

for OpenMP (notably ARCHER, the best in its class) are

highly memory inefficient, needing at least five times (and six

times in practice) more memory than the application itself.

Despite such a large memory overhead, they also miss a

significant number of data races due to either schedule-based

race masking or shadow-cell eviction.
In contrast, in our new work embodied in the tool SWORD,

the online analysis can be carried out using a memory buffer

of under 3 megabytes in size. Traces collected in this buffer

are compressed, and written out to log files, where the

offline analysis based on stepping an operational semantics

model takes over. This algorithm is also memory efficient,

being based on novel streaming algorithms and state-of-the-

art interval tree data structures to merge traces and check for
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races. ILP-based constraint-solving further reduces the over-

head of detecting overlapping accesses. Overall, SWORD is at

least 1,000 times more memory-efficient than ARCHER, thus

virtually guaranteeing the absence of out-of-memory errors.

For instance, we could not finish checking the AMG2013

benchmark at large scale using ARCHER, while with SWORD

this was easily accomplished.

We present extensive experimental results that demonstrate

these features of SWORD as well as its overall superior

performance as well as race coverage. We performed the

experiments on a recently published OpenMP benchmark

suite [2] as well as all previous data race checking benchmarks

on which ARCHER was run. Experimental results demonstrate

that SWORD is comparable to ARCHER even on examples

where the memory pressure is not an issue. SWORD is also

sound and complete with respect to data race checking in the

absence of data-dependent control flow variations. Last but not

least, SWORD has actually found races missed by ARCHER as

well as some of the feasible races that are not documented in

a recent study [2].

While SWORD’s dynamic analysis is overall faster than

ARCHER, its offline data race analysis can sometimes take

a long time, especially at very large scales. This slow-down

can be mitigated through the development of novel parallel

algorithms, which we relegate to future work. We also plan to

extend SWORD’s approach to target regions that are offloaded

on accelerators, as well as accommodate tasking.

In conclusion, SWORD is currently the tool of choice for

checking data races in large-scale OpenMP programs. In

production use, a user of SWORD may employ available tech-

niques to systematically explore the execution-space of their

application, and attempt to check for data races within these

executions. They can carry this out without worrying about

out-of-memory errors—even when checking their applications

on production-level inputs. In the process, they will also

obtain superior race coverage than any available OpenMP race

checker.
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