Quantifying Compiler Effects
on Code Performance and
Reproducibility using FLIT

lgnacio Laguna?, Gregory L. Lee?, Holger Jones?

Michael Bentley', lan Briggs’,
Ganesh Gopalakrishnan', Dong H. Ahn?,

'University of Utah - Computer Science,

’Lawrence Livermore National Laboratory

INTRO
e HPC science requires trust and

reproducibility, but also performance

e Compiler optimizations provide

e Our FLIT testing tool helps quantify these

performance, but sometimes with
significant numerical differences

differences and locate the affected
functions

METHODS
e Differences are measured using a

trusted baseline compilation

e Bisect locates affected sites by mixing

files and functions of a difference-
producing compilation with the trusted
baseline compilation

EXPERIMENTS

1.

MFEM: measure performance and
variability of this finite element code

Laghos: find where compiler
optimizations invalidate the simulation

LULESH: show FLIiT can find the function
site of injected floating-point instructions

RESULTS
e One MFEM test showed 196% relative

difference from one contributing function

e FLIT Bisect found the difference-

producing function in Laghos in 40
minutes versus 2 weeks manually.

e FLIiT Bisect found 100% of the injections

DISCUSSION
e FLIT provides testing and a workflow to

e Future work: find variability sites in the

NSF OAC 1535032; Additional support for this work : U.S.

in LULESH, with no false positives.

resolve compiler reproducibility concern

face of runtime nondeterminism

®

Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344.

<%

Can we find where compiler
optimizations alter simulations?

The FLIT tool found a
196% relative error

Yes.

N a finite element code and found
the one function site where
optimizations invalidated the

FLIT Workflow

Create FLIT
tests

Determinize

simulation.

Library, Source,

FLiT Bisect

and Function
Blame

Debug Issue

tools

using standard

MFEM Example #9

=C\l 1.4- Fastest bitwise equal:
clang++ -03

Q 1.2 Speedup: 1.094 ’\

4 1.0+

ol

= 0.8 Fastest variable:

- icpc -03 -fp-model fast=1

e 0.6 - Speedup: 1.396

G- Variability: 7.78e-14

O

S 0.4

5

% 0.2 - z_-‘-J e bitwise equal to baseline

(/D)' . % shows variability

0.0 TR
Compilation

File Bisect Symbol Bisect
fn, fn, fn, fn,
fn, fn, fn, fn,
fns fns fns fn,
fny, fn, fn, fn,
fng fn; fn; fng
fng fng fng fng

Variable Compilations (of 244)

Relative Error

120 -

100 -

80 1

60 -

40 A

20 1

O_

MFEM Variability Results

Test 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 19

101 -
101 -
1073 1

—_
J
t

> C—> ~ 190% relative error

most significant

o =
107° ; 1 —_—
==
10~
13 —+
10 . - . ? - & 1 % m
1015 == I
LULESH Injection Accuracy
Category Count
exact finds 2,690
indirect finds 984
wrong finds 0
missed finds 0
not measurable 702
total 4,376

Laghos Bisect Results

baseline

digits
k: |1

files
2

all

funcs # runs
1 2 all| 1 2 all

g++ -02

2

DN = pd

18 183 14
18 18 14
18 18 14
28 37 57

WS W VU W GHE) Gy
DN = pd

xlc++ -02

Ul
DO = =

18 18 14
18 18 14
18 18 14
28 37 69

— e pd

xlc++ -03 3

strict

i
DO = =

W = = W = = W = =

Ul = = (@) N N N Ul = =

18 183 14
18 18 14
18 18 14
28 39 60

DO = = N = =

—) e pd

