Quantifying Compiler Effects on Code Performance and Reproducibility using FLIT

Michael Bentley¹, Ian Briggs¹,
Ganesh Gopalakrishnan¹, Dong H. Ahn²,
Ignacio Laguna², Gregory L. Lee², Holger Jones²

¹University of Utah - Computer Science,
²Lawrence Livermore National Laboratory

INTRO

- HPC science requires trust and reproducibility, but also performance
- Compiler optimizations provide performance, but sometimes with significant numerical differences
- Our FLiT testing tool helps quantify these differences and locate the affected functions

METHODS

- Differences are measured using a trusted baseline compilation
- Bisect locates affected sites by mixing files and functions of a differenceproducing compilation with the trusted baseline compilation

EXPERIMENTS

- 1. **MFEM:** measure performance and variability of this finite element code
- 2. **Laghos:** find where compiler optimizations invalidate the simulation
- 3. **LULESH:** show FLiT can find the function site of injected floating-point instructions

RESULTS

- One MFEM test showed 196% relative difference from one contributing function
- FLiT Bisect found the difference-producing function in Laghos in 40 minutes versus 2 weeks manually.
- FLiT Bisect found 100% of the injections in LULESH, with no false positives.

DISCUSSION

- FLiT provides testing and a workflow to resolve compiler reproducibility concerns
- Future work: find variability sites in the face of runtime nondeterminism

NSF OAC 1535032; Additional support for this work: U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Can we find where compiler optimizations alter simulations?

Yes.

The FLiT tool found a

196% relative error
in a finite element code and found
the one function site where
optimizations invalidated the
simulation.

Category	Count
exact finds	2,690
indirect finds	984
wrong finds	0
missed finds	0
not measurable	702
total	4.376

Laghos	Bisect	Results

baseline	digits	# files		# funcs			# runs			
	<i>k</i> :	1	2	all	1	2	all	1	2	all
	2	1	1	1	1	1	1	18	18	14
~++ -O2	3	1	1	1	1	1	1	18	18	14
g++ -02	5	1	1	1	1	1	1	18	18	14
	all	2	3	5	1	2	7	28	37	57
	2	1	1	1	1	1	1	18	18	14
v1a++ -02	3	1	1	1	1	1	1	18	18	14
xlc++ -02	5	1	1	1	1	1	1	18	18	14
	all	2	3	6	1	3	7	28	37	69
	2	1	1	1	1	1	1	18	18	14
xlc++ -03	3	1	1	1	1	1	1	18	18	14
strict	5	1	1	1	1	1	1	18	18	14
	all	2	3	5	1	2	5	28	39	60