Quantifying Compiler Effects
on Code Performance and
Reproducibility using FLIT

lgnacio Laguna?, Gregory L. Lee?, Holger Jones?

Michael Bentley', lan Briggs’,
Ganesh Gopalakrishnan', Dong H. Ahn?,

'University of Utah - Computer Science,

’Lawrence Livermore National Laboratory

INTRO
e HPC science requires trust and

reproducibility, but also performance

e Compiler optimizations provide

e Our FLIT testing tool helps quantify these

performance, but sometimes with
significant numerical differences

differences and locate the affected
functions

METHODS
e Differences are measured using a

trusted baseline compilation

e Bisect locates affected sites by mixing

files and functions of a difference-
producing compilation with the trusted
baseline compilation

EXPERIMENTS

1.

MFEM: measure performance and
variability of this finite element code

Laghos: find where compiler
optimizations invalidate the simulation

LULESH: show FLIiT can find the function
site of injected floating-point instructions

RESULTS
e One MFEM test showed 196% relative

difference from one contributing function

e FLIT Bisect found the difference-

producing function in Laghos in 40
minutes versus 2 weeks manually.

e FLIiT Bisect found 100% of the injections

DISCUSSION
e FLIT provides testing and a workflow to

e Future work: find variability sites in the
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Compilation
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MFEM Variability Results
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LULESH Injection Accuracy
Category Count
exact finds 2,690
indirect finds 984
wrong finds 0
missed finds 0
not measurable 702
total 4,376

Laghos Bisect Results
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